LESSON PLAN Mathematics Department G. C.Hisar 2023-24

B.A. & B.Sc. Odd Semesters

CLASS:<u>B.Sc./B.A.-I Year I Sem</u> NAME OF PAPER - <u>ALGEBRA</u> PAPER CODE (for B.Sc.) - <u>CML-106</u> PAPER CODE (for B. A.) - <u>BAMH-101</u>

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1.Symmetric, Skew-symmetric. Hermitian and Skew-
			Hermitian.Rank of a matrix. Inverse of a matrix.
		2 nd week	2 Row rank and column rank of a matrix.
		3 rd week	3. Eigenvalues, eigenvectors and the characterstic
			equation of a matrix, Minimal polynomial of a
			matrix.
		Last week	4 Cayley Hamilton theorem and its use in finding
			inverse of a matrix.
2.	2 nd	1 st week	1. Application of matrices to a system of linear (both
			homogenous and non-homogenous) equations.
		2 nd week	2Theorems on consistency of a system of linear
		2rd wook	equations.
		J WEEK	Ouadratic forms
		Last week	4Cononical form of a Bilinear form. Matrix notation
			of bilinear and Quadratic Form
3.	3 rd	1 st week	1.Relations between the roots and coefficients of
		and	general polynomial equation in one variable.
		2 nd week	2.Solution of polynomial equations having conditions
		3 rd week	on roots.
			3. Common roots and multiple roots.
		Last week	4 Transformation of equations
	Ath	1 st 1	
4.	4"	1 жеек	1. Nature of the roots of an equation.
		2 nd week	2. Solution of cubic equations (Cardan's method).
		3 rd week	3.Biquadratic equations and their
		& Logt	solutions,Descarte s rule of signs, Ferrari 's
		Last week	Miemou. Descarte s rule of signs of polynomial.

CLASS:<u>B.Sc./B.A.-I Year I Sem</u> NAME OF PAPER -<u>CALCULUS</u> PAPER CODE (for B.Sc.) - <u>CML-107</u> PAPER CODE (for B. A.) - <u>BAMH-102</u>

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1 st	1 st week	1.ε-δ definition of the limit of a function, Basic
		2 nd week	properties of limits, 2. Continuous functions and classification of discontinuities. 3. Successive differentiation
		Last week	4. Leibnitz theorem, Maclaurin and Taylor series
			expansions.
2.	2^{nd}	1 st week	1.Asymptotes in Cartesian coordinates, Intersection
			coordinates.
		2 nd week	2. Curvature, Radius of curvature for Cartesian curves, parametric curves, polar curves,
		3 rd week	3. Tests for concavity and convexity, singular points,
		Last week	4. ., Point of inflexion, Multiple points, Cusps, nodes and conjugate points, species of cusps
3.	3 rd	1 st week	1. Tracing of curves in Cartesian, parametric and polar co-ordinates.
		2nd wook	2. Reduction formulae, .Derivation of Reduction formulae by connecting with other integral
		3 rd week	3. Rectification.
		Last week	4. Length of curve in Cartesian, Parametric and polar
			curves.
4.	4 th	1 st week 2 nd week	 Quadrature(area) Sectorial area. Area bounded by closed curves.Area enclosed
		3 rd week	3. Volumes and Surfaces of solids of revolution.
		Last week	4. Volume bounded between two solids.

CLASS: B.<u>Sc. Mathematics-I Year 1st Sem</u> NAME OF PAPER–Mathematics Lab-I (Practical) PAPER CODE (for B.Sc.) - <u>CMP-110</u> PAPER CODE (for B. A.) – BAMH (P)-103

SR.	MONTHS	PERIOD	TOPICS
NU. 1	1 st	1st wook	Part A: Introduction to Programming in C
1.	1	2 nd week	Data types, Operators and expressions, Input / outputs functions. Decisions control structure: Decision statements, Logical and conditional statements, Implementation of Loops-for, while, do while; Switch Statement & Case control structures.
			Part B: Following Program should be done as Practical:-
		3 rd week &	1. Program to interchange the value of two variables.
		Last week	2. Program to calculate compound interest.
			3. Program for testing a leap year.
2.	2^{nd}	1 st week	4. Program to find greatest of three numbers.
		2 nd week	5. Program to calculate Gross salary of an employee.
		3 rd week	6. Program to prepare electricity Bill.
		Last week	7. Program to find roots of a quadratic equation.
3.	3 rd	1 st week	8. Program to provide output of a given function.
		2 nd week	9. Program to display table of an input number
		3 rd week	10. Program to find reverse of a number
		Last week	11. Program to generate Fibonacci series.
4.	4 th	1 st week	12. Program to check whether number is prime or not.
		2 nd week	13. Program to generate first n prime numbers.
		3 rd week	14. Program to check a number is Armstrong or not.
		Last week	15. Program to convert a number to its binary equivalent.

CLASS:<u>B.Sc./B.A.-II Year III Sem</u> NAME OF PAPER – <u>ADVANCE CALCULUS</u> PAPER CODE (for B.Sc.) - <u>CML-306</u> PAPER CODE (for B. A.) – BAMH-201

SR. NO	MONTHS	PERIOD	TOPICS
1.	1 st	1 st week	1. Continuity, Sequential Continuity, properties of continuous functions, Uniform continuity, chain rule of differentiability.
		2 nd week	 Mean value theorems; Rolle's Theorem and Lagrange's mean value theorem and theirgeometrical interpretations.
		3 rd week	3. Taylor's Theorem with various forms of remainders, Darboux intermediate valuetheorem for derivatives,
		Last week	4. Indeterminate forms.
2.	2 nd	1 st week	 Limit and continuity of real valued functions of two variables. Partial differentiation.
		2 nd week	2. Total Differentials;Composite functions & implicit functions.
		3 ^{ra} week Last week	 Change of variables. Homogenous functions & Euler's theorem on homogeneous functions. Taylor's theorem for functions of two variables
3.		1 st week	1. Differentiability of real valued functions of
	3rd	2 nd week	two variables.2. Schwarz and Young's theorems. Implicitfunction theorem.
		3 rd week	3. Maxima, Minima and saddle points of two variables.
		Last week	4. Lagrange's method of multipliers
4.	4 th	1 st week 2 nd week 3 rd week Last week	 Jacobians, Beta and Gama functions, Double and Triple integrals, Dirichlets integrals, change of order of integration in double integrals

CLASS:<u>B.Sc./B.A.-II Year III Sem</u> NAME OF PAPER – <u>NUMERICAL ANALYSIS</u> PAPER CODE (for B.Sc.) - <u>CML-307</u> PAPER CODE (for B. A.) – BAMH-202

SR.	MONTHS	PERIOD	TOPICS
NU.	1 st	1st mask	1 Einite Difference energian and their relations
1.	I st	1 week	difference table, finding the missing terms and effect of errorin a difference tabular values,
		2 nd week	2.Interpolation with equal intervals: derivations of Newton's forward andNewton's backward interpolation formulae and their applications
		3 rd week	3. Interpolation with unequal intervals: derivations of Newton's divided difference &
		Last week	4.Lagrange's Interpolation formulae and their applications.
2	2nd	1 st week	1.Central Difference interpolation formulae:
	-		derivations of Gauss's forward and Gauss's
			backwardinterpolation formulae, Sterling, Bessel
			formulae and their applications.
		2 nd week	2.Numerical Differentiation: Relation
		and a	between difference operator and derivative operator,
		3 rd week	3. Derivative of a function using interpolation
		Lost week	formulae (asstudied in Sections – 1 & II).
		Last week	4. Numerical integration: Newton-Cole's Quadrature
			Simpson's one- third rule and Simpson's three-eighth
			rule. Chebychev formula. Gauss Ouadrature formula.
3.	3 rd	1 st week	1.Solution of Algebraic and Transcendental
	-		equations: Bisection method, Regula-Falsi method,
			Secant method, Newton-Raphson's method,
		2 nd week	2.Newton's iterative method for finding pth root of a
		ard wook	number.
		5 WEEK	elimination method. Gauss-Iordan method
			triangularization method (LUdecomposition method).
			4.Iterative method, Jacobi's method, Gauss-Seidal's
		Last week	method, Relaxation method.
4.	4 th	1 st week	Eigen Value Problems: Power method, Jacobi's
		and a	method, Given's method, House-Holder's method.
		2 nd week	Numerical solution of ordinary differential equations:
		ard wool	Single step methods-Picard's method. Taylor's series
		J WEEK	Runge-Kutta Methods Multiple step methods
		Last week	Predictorcorrector
		Lust week	method, Milne-Simpson's method

CLASS: B.<u>Sc. Mathematics-II Year 3rd Sem</u> NAME OF PAPER–Mathematics Lab-III (Practical) PAPER CODE (for B.Sc.) - <u>CMP-310</u> PAPER CODE (for B. A.) – <u>BAMH (P)-203</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1^{st}	1st week & 2 nd week	1. To interpolate the data using Newton's forward interpolation formula
		3 rd week & Last week	2. To interpolate the data using Newton's backward interpolation formula
2.	2 nd	1 st week & 2 nd week	3. To interpolate the data using Gauss's forward interpolation formula
		3 rd week & Last week	4. To interpolate the data using Gauss's backward interpolation formula
3.	3 rd	1 st week & 2 nd week	5. To interpolate the data using Lagrange's interpolation formula
		3 rd week	6. To find the roots of algebraic and transcendental equations using Bisection method.
		Last week	7. To find the roots of algebraic and transcendental equations using Regula-Falsi method.
4.	4 th	1 st week & 2 nd week	8. To find the roots of algebraic and transcendental equations using Secant method.
		3 rd week & Last week	 To find the roots of algebraic and transcendental equations using Newton-Raphson's method. .

CLASS:<u>B.Sc./B.A.-III Year V Sem</u> NAME OF PAPER – <u>GROUPS AND RINGS</u> PAPER CODE (for B.Sc.) - <u>CML-506(i)</u> PAPER CODE (for B. A.) – BAMH-301(i)

SR. NO.	MONTHS	PERIOD	TOPICS	
1.	1 st	1 st week 2 nd week 3 rd week Last week	 1.Definition of a group.Example of abelian and non-abelian groups. The group Znof integers under addition modulo n and the group of (n) of units under multiplication modulo n. 2.Generator of a group. Cyclic groups. 3.Permutations groups. Alternating groups, Cayley's theorem. Subgroups and Subgroup criteria. 4.Cosets, Left and right cosets, properties of cosets. 	
2.	2 nd	1 st week 2 nd week 3 rd week Last week	 1Index of a sub-group. Coset decomposition, 2. Lagrange's theorem on groups and its consequences, Normal subgroups, Quotient groups, 3.Homomorphisms, isomorphisms, automorphisms on group. 4.Center of a group and class equation of a group and derived group of a group. 	
3.	3 rd	1 st week 2 nd week 3 rd week Last week	 Introduction to Rings, Subrings, Integral domains and Fields, Characteristics of a ring. Ring homomorphisms, Theorems on Ring homomorphisms. Ideals (Principle, Prime and Maximal) and Quotient rings, Field of quotients of an integral domain 	
4.	4 th	1 st week 2 nd week 3 rd week Last week	 Euclidean rings, Polynomial rings, Polynomials over the rational field, The Eisenstein's criterion of irreducibility of polynomials over the field of rational numbers Polynomial rings over commutative rings. Principal ideal domain, Unique factorization domain. 	

CLASS:<u>B.Sc./B.A.-III Year V Sem</u> NAME OF PAPER – <u>SEQUENCE AND SERIES</u> PAPER CODE (for B.Sc.) - <u>CML-507(i)</u> PAPER CODE (for B. A.) – BAMH-302(i)

SR.	MONTHS	PERIOD	TOPICS
NU. 1	1 st	1 st week	1 Boundedness of the set of real numbers: least upper
1.	1	1 WCCK	bound greatest lower bound of a set, neighborhoods.
			interior points, isolated points,
		2 nd week	2.limit points, open sets, closed set, interior of a set, closure
		ard	of a set in real numbers and their properties.
		3 rd week	3. Sequence: Real Sequences and their convergence, Theorem on limits of sequence Rounded and monotonic
			sequences
		Last week	4.Cauchy's sequence. Cauchy general principle of
			convergence, sub sequence, subsequential limits.
2.	2 nd	1 st week	1.Infinite series: Convergence and divergence of Infinite
		and see als	Series, Comparison Tests of positive terms Infinite series,
		2 nd week	Convergence and divergence of geometric series,
		3 rd week	3 Hyper Harmonic series or p-series Infinite series: D-
			Alembert's ratio test, Raabe's test, Logarithmic test,
			4.Cauchy's Nth root test, Gauss Test, Cauchy's Integral test,
		Last week	Cauchy's condensation test.
			Alternating series: Leibnitz's test, absolute and conditional
			convergence. Arbitrary series: Abel's lemma, Abel's test,
3.	3 rd	1 st week	1.Fourier's series: Fourier expansion of piecewise
			monotonic functions.
		2 nd week	2.Properties of Fourier Co-efficients, Dirichlet's conditions.
		3 rd week	3. Parseval's identity for Fourier series.
		Last week	4. Fourier series for even and odd functions, Hall range series Change of Intervals
4	4 th	1 st week	1Riemann integral: Definition and examples. Darboux's
	•		Theorem and condition of existence of Riemann's integral.
		2 nd week	2.Integrabililty of continuous, monotonic functions and
		and -	discontinuous functions. Properties of integrable functions.
		3 ^{ra} week	3.Continuity and differentiability of integrable functions.
		Last wool-	4 The Fundamental theorem of integral calculus Mean value
		Last week	theorems of integral calculus.

CLASS:<u>B.Sc./B.A.-III Year V Sem</u> NAME OF PAPER – <u>NUMBER THEORY AND TRIGONOMETRY</u> PAPER CODE (for B.Sc.) - <u>CML-508(i)</u> PAPER CODE (for B. A.) – <u>BAMH-303(i)</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1 st week	1 Linear Diophantine equation, prime
			counting function,
		2 nd week	2.statement of prime number theorem,
			Goldbach conjecture,
		3 rd week	3 linear congruences, complete set of
			residues,
		Last week	4.Chinese remainder theorem, Fermat's little
			theorem, Wilson's theorem
2.	2^{nd}	1 st week	1.Number theoretic functions, sum and
			number of divisors, totally multiplicative
			functions,
		2 nd week	2.the Möbius inversion formula, the greatest
			integer function,
		3 rd week	3. Euler's phi-function, Euler's theorem,
		Last week	4.reduced set of residues, some properties of
-	ard	1 st	Euler's phi-function.
3.	314	1 st week	1. Order of an integer modulo n, primitive
		and	2 composite numbers having primitive roots
		2 nd week	Euler's criterion
		ardal-	3 the Legendre symbol and its properties
		5 week	quadratic reciprocity
		L act wool	4 quadratic congruences with composite
		Last week	moduli.
	4th	d st 1	
4.	4 ^m	1 st week	1.Exponential, Logarithmic, Circular
			functions; $\sin(nx)$, $\cos(nx)$, $\tan(nx)$, $\sin(nx)$,
		and 1	COSnX, tafinX,
		2 nd week	2. hyperbolic and inverse hyperbolic
			saries
		ard -	3 Summation of Trigonometric series
		3 ^{ru} week	A Trigonometric expansions of size and
		Last week	cosine as infinite products (without proof)
		3 rd week Last week	3.Summation of Trigonometric series,4. Trigonometric expansions of sine and cosine as infinite products (without proof).

B.Com.

Odd Semesters

CLASS:<u>B.Com. (General) and B.Com. (Honours)-I Year I Sem</u> NAME OF PAPER – <u>BUSSINESS MATHEMATICS</u>

PAPER CODE – BC-105

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1 st week	1. Matrices and Determinants: concept of matrix, types, and algebra of matrices; properties of determinants;
		2 nd week	2.calculation of values of determinants up to third order, adjoint of a matrix, elementary row or column operations;
		3 rd week	3.Finding inverse of a matrix through adjoint and elementary row or column operations;
		Last week	4.solution of a system of linear equations having unique solution and involving not more than three variables.
2.	2 nd	1 st week	1. Linear inequalities:
		2 nd week	2. graphical solution of linear equalities in two variables,
		3 rd week	3. solution of system of linear
		&	inequalities in two variables.
		Last week	
3.	3 rd	1 st week	1. Linear programming-formulation of equation:
		2 nd week	2. graphical method of solution;
		3 rd week	3. problems relating to two variables including the case of mixed constraints; cases having no solution,
		Last week	4. multiple solutions, unbounded solution and redundant constraints.
4.	4 th	1 st week	1. Logarithms and
		2 ^{na} week	2. Anti-logarithms,
		5 ⁴ week	3. Permutations and
		Last week	4. Combinations.

Odd Semesters

CLASS:<u>B.Sc.(Hons) Mathematics-I Year I Sem</u> AME OF PAPER – <u>Mathematics-I Basic Algebra</u> PAPER CODE - <u>BML-102</u>

SR.	MONTHS	PERIOD	TOPICS
NO.		_	
1.	1 st	1st week	1. Symmetric, Skew-symmetric, Hermitian and skew Hermitian matrices. Elementary operations on matrices.
		2 nd week	2. Rank of a matrices. Inverse of a matrix. Linear dependence and independence of rows and columns of matrices. Row rank and
		3 rd week	3. Eigenvalues, eigenvectors and the
		Last week	4. Cayley Hamilton theorem and its use in finding the inverse of a matrix.
2.	2 nd	1 st week	1. Applications of matrices to a system of linear (both
	-		homogeneous and non-homogeneous) equations.
		2 nd week	2. Theorems on consistency of a system of linear
		3 rd week	3. Unitary and Orthogonal Matrices,
		Last week	4.Bilinear and Quadratic forms.
3.	3 rd	1 st week	1.Relations between the roots and coefficients of general polynomial equation in one variable.
		2 nd week	2.Solutions of polynomial equations having conditions on roots.
		3 rd week	3.Common roots and multiple roots.
		Last week	4.Transformation of equations.
4.	4 th	1 st week	1. Nature of the roots of an equation,
		2 ^{na} week	2. Descarte's rule of signs.
		3 rd week	3. Solutions of cubic equations (Cardon's method).
		Last week	4. Biquadratic equations and their solutions.

CLASS:<u>B.Sc.(Hons) Mathematics-II Year III Sem</u> NAME OF PAPER – <u>Number Theory and Trigonometry</u> PAPER CODE - <u>BML-301</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1 Divisibility, G.C.D.(greatest common divisors),
			L.C.M.(least common multiple) Primes,
		2 nd week	2.Fundamental Theorem of Arithemetic. Linear
			Congruences,
		3 rd week	3.Fermat's theorem. Wilson's theorem and its
			converse.
		Last week	4.Linear Diophanatine equations in two variables
2.	2^{nd}	1 st week	1.Complete residue system and reduced residue
			system modulo m.
		2 nd week	2. Euler's ϕ function Euler's generalization of
			Fermat's theorem. Chinese Remainder Theorem.
		3 rd week	3.Quadratic residues. Legendre symbols. Lemma of
			Gauss; Gauss reciprocity law. Greatest integer
			function [x].
		Last week	4.The number of divisors and the sum of divisors of a
			natural number n (The functions $d(n)$ and $\sigma(n)$).
			Moebius function and Moebius inversion formula.
3.	3 rd	1 st week	1.DeMoivre's Theorem and its Applications.
		2 nd week	2.Expansion of trigonometrical functions.
		3 rd week&	3.Direct circular and hyperbolic functions and their
		Last week	properties.
4.	4 th	1 st week	1.Inverse circular and hyperbolic functions and their
			properties.
		2 nd week	2.Logarithm of a complex quantity.
		3 rd week	3.Gregory's series.
		Last week	4. Summation of Trigonometry series.

CLASS:<u>B.Sc.(Hons) Mathematics-II Year IIISem</u> NAME OF PAPER – <u>Ordinary Differential Equations</u> PAPER CODE - <u>BML-302</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1.Geometrical meaning of a differential equation.
			Exact differential equations, integrating factors.
		2 nd week	2. First order higher degree equations solvable for
			ryn
		3rd wook	3 Lagrange's equations Clairant's equations
		J week	A Equation reducible to Clairaut's form Singular
		Last week	4.Equation reductore to Clanadt's form. Singular
			solutions.
	And	1 st 1	
2.	2 ^{nu}	1 st week	1. Orthogonal trajectories: in Cartesian coordinates
			and polar coordinates.
		2 nd week	2.Self orthogonal family of curves. Linear
		_	differential equations with constant coefficients.
		3 rd week	3.Homogeneous linear ordinary differential
			equations.
		Last week	4. Equations reducible to homogeneous
3.	3 rd	1 st week	1.Linear differential equations of second order:
	U		Reduction to normal form.
		2 nd week	2 Transformation of the equation by changing the
			dependent variable/ the independent variable
		3 rd week	3 Solution by operators of non-homogeneous linear
		5 WCCK	differential equations Reduction of order of a
			differential equation
		Lost wool	4 Mothod of variations of nonomators. Mathod of
		Last week	4. Method of variations of parameters. Method of
			undetermined coefficients.
	ath	1.st	
4.	4 ^m	1 st week	1. Ordinary simultaneous differential equations.
			Solution of simultaneous differential equations
		and	involving operators (d/dx) or (d/dt) etc.
		2 nd week	2.Simultaneous equation of the form $dx/P = dy/Q$
			= dz/R.
		3 rd week	3. Total differential equations. Condition for $Pdx +$
			Qdy + Rdz = 0 to be exact.
		Last week	4.General method of solving $Pdx + Qdy + Rdz = 0$
			by taking one variable constant. Method of auxiliary
			equations.

CLASS:<u>B.Sc.(Hons) Mathematics-II Year IIISem</u> NAME OF PAPER – <u>Advanced Calculus</u> PAPER CODE - B<u>ML-303</u>

SR.	MONTHS	PERIOD	TOPICS
NU. 1	1 st	1st week	1 Continuity Sequential Continuity properties of
1.	1	1st week	continuous functions. Uniform continuity, properties of
			of differentiability.
		2 nd week	2.Mean value theorems: Rolle's Theorem and
			Lagrange's mean value theorem and their
			geometrical interpretations.
		3 rd week	3. Taylor's Theorem with various forms of
			remainders,
		Last week	4.Darboux intermediate value theorem for
			derivatives, Indeterminate forms.
2.	2^{nd}	1 st week	1.Limit and continuity of real valued functions of two
		and a	variables.
		2 nd week	2.Partial differentiation. Total Differentials;
			Composite functions & implicit functions. Change
		ard	of variables.
		3 rd week	3. Homogenous functions & Euler's theorem on
		Lost week	nomogeneous functions.
		Last week	4. Taylor's theorem for functions of two variables
3	3 rd	1 st week	1 Differentiability of real valued functions of two
5.	5	1 week	variables
		2 nd week	2.Schwarz and Young's theorems. Implicit function
			theorem.
		3 rd week	3.Maxima, Minima and saddle points of two
			variables.
		Last week	4. Lagrange's method of multipliers
4.	4 th	1 st week	1.Curves: Tangents, Principal normals, Binormals,
			Serret-Frenet formulae. Locus of the centre of
		and -	curvature,
		2 ^{nu} week	2.Spherical curvature, Locus of centre of Spherical
		2rd1-	curvature,
		J Week	5. Involutes, evolutes, Bertrand Curves. Surfaces:
		X Last wool	Final planes, one parameter family of suffaces,
		Lasi week	Linvelopes.

CLASS:<u>B.Sc.(Hons) Mathematics-II Year IIISem</u> NAME OF PAPER – <u>Vector Calculus</u> PAPER CODE - B<u>ML-304</u>

SR.	MONTHS	PERIOD	TOPICS
NU.	4 04		
1.	1 st	Ist week	1. Scalar and vector product of three vectors, product
			of four vectors. Reciprocal vectors.
		2 nd week	2.Vector differentiation.
		3 rd week	3.Scalar Valued point functions, vector valued point
			functions,
		Last week	4.derivative along a curve, directional derivatives
2.	2 nd	1 st week	1.Gradient of a scalar point function, geometrical
			interpretation of grad $\boldsymbol{\Phi}$, character of gradient as a
			point function
		2 nd week	2 Divergence and curl of vector point function
			2. Divergence and can of vector point function,
			characters of Div J and Curl J as point function,
			examples.
		3 rd week	3. Gradient, divergence and curl of sums and product
			and their related vector identities.
		Last week	4.Laplacian operator.
3.	3 rd	1 st week	1.Orthogonal curvilinear coordinates Conditions for
		&	orthogonality fundamental triad of mutually
		2 nd week	orthogonal unit vectors.
		3 rd week	2.Gradient, Divergence, Curl and Laplacian operators
		&	in terms of orthogonal curvilinear coordinates,
		Last week	Cylindrical co-ordinates and Spherical co-ordinates
4.	4 th	1 st week	1.Vector integration; Line integral,
		2 nd week	2.Surface integral, Volume integral.
		3 rd week	3. Theorems of Gauss, Green & Stokes and
		Last week	4.problems based on these theorems.

CLASS:<u>B.Sc.(Hons) Mathematics-II Year IIISem</u> NAME OF PAPER – <u>Mathematical Statistics</u> PAPER CODE - B<u>ML-305</u>

SR.	MONTHS	PERIOD	TOPICS
NU. 1	1 st	1 at wool	1 Management of Control Tondoney and Logation
1.	L ^{SC}	1st week	1. Measures of Central Tendency and Location.
			mean, median, mode, geometric mean, narmonic
		andal-	mean, partition values.
		2 week	2. Measures of Dispersion: Absolute and relative
		ard most	measures of range, quartile deviation,
		J week	5. Inean deviation,
		Last week	4.standard deviation (0), coefficient of variation.
2.	2^{nd}	1 st week	1.Moments, Skewness and Kurtosis:
		2 nd week	2.Moments about mean and about any point and
			derivation of their relationships, effect of change of
			origin and scale on moments,
		3 rd week	3.Sheppard's correction for moments (without
			derivation), Charlier's checks,
		Last week	4.Concepts of Skewness and Kurtosis.
3.	3 rd	1 st week	1.Basic concepts in Probability, Bayes' theorem and
			its applications.
		2 nd week	2.Random Variable and Probability Functions:
		3 ^{ra} week	3. Definition and properties of random variables,
			discrete and continuous random variable,
		Last week	4.Probability mass and density functions, distribution
	44h	a st	function.
4.	4 ^m	1 st week	1.Correlation for Bivariate Data: Concept and types
		and	of correlation, Scatter diagram,
		2 nd week	2.Karl Pearson Coefficient (r) of correlation and rank
		a rd	correlation coefficient.
		5 week	3.Linear Regression: Concept of regression, principle
			of two lines of regression properties of regression
			of two lines of regression, properties of regression
			regression line
		Last wool	A correlation coefficient between observed and
		Lasi week	estimated values. Angle between two lines of
			regression Difference between correlation and
			regression. Difference between conclation and
			10510051011.

CLASS:<u>B.Sc.(Hons) Mathematics-II Year IIISem</u> NAME OF PAPER – <u>Special Functions-I</u>

PAPER CODE - BML-306

SR.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week & 2 nd week 3 rd week & Last week	1.Series solution of differential equations – Power series method,2.Definitions of Beta and Gamma functions.
2.	2 nd	1st week & 2 nd week 3 rd week & Last week	1.Bessel equation and its solution: Bessel functions and their properties2Convergence, recurrence relations and generating functions, Orthogonality of Bessel functions
3.	3 rd	1st week & 2 nd week 3 rd week & Last week	1.Legendre and Hermite differentials equations and their solutions:2.Legendre and Hermite functions and their properties-Recurrence Relations and generating functions
4.	4 th	1st week & 2 nd week 3 rd week & Last week	 1.Orhogonality of Legendre and Hermite polynomials. Rodrigues' Formula for Legendre &Hermite Polynomials, 2.Laplace Integral Representation of Legendre polynomial

CLASS: <u>B.Sc.(Hons) Mathematics-III Year V Sem</u> NAME OF PAPER – <u>Real Analysis</u> PAPER CODE - B<u>ML-501</u>

SR.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1.Riemann integral,
		2 nd week	2.Integrability of continuous and monotonic
			functions,
		3 rd week	3. The Fundamental theorem of integral
			calculus.
		Last week	4. Mean value theorems of integral calculus.
2.	2 nd	1 st week	1.Improper integrals and their convergence,
			Comparison tests,
		2 nd week	2.Abel's and Dirichlet's tests,
			Frullani's integral, Integral as a function of a
			parameter.
		3 rd week	3.Continuity, Differentiability and
		&	integrability of an integral of a function of a
		Last week	parameter.
	and		
3.	3 rd	1 st week	1.Definition and examples of metric spaces,
			neighborhoods, limit points, interior points,
		and	open and closed sets,
		2 nd week	2. closure and interior, boundary points,
			subspace of a metric space,
		and	equivalent metrics,
		3 rd week	3.Cauchy sequences, completeness, Cantor's
			intersection theorem,
		Last week	4.Baire's category theorem, contraction
	44h	4 at -	Principle
4.	4 th	1 st week	1.Continuous functions, uniform continuity,
		and	compactness for metric spaces,
		2 nd week	2. sequential compactness, Bolzano-
		and	Weierstrass property,
		3 rd week	3.total boundedness, finite intersection
			property, continuity in relation with
			compactness,
		Last week	4.connectedness, components, continuity in
			relation with connectedness.

CLASS: <u>B.Sc.(Hons) Mathematics-III Year V Sem</u> NAME OF PAPER – <u>Groups and Rings</u> PAPER CODE - <u>BML-502</u>

SR.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1 Definition of a group with example and
	_		simple properties of groups.
		2 nd week	2. Subgroups and Subgroup criteria.
			Generation of groups, cyclic groups,
		3 rd week	3.Cosets, Left and right cosets, Index of a
			sub-group Coset decomposition,
		Last week	4. Largrage's theorem and its consequences,
			Normal subgroups, Quotient groups,
2.	2 nd	1 st week	1. Homoomorphisms, isomophisms,
			automorphisms and
		2 nd week	2.inner automorphisms of a group.
			Automorphisms of cyclic groups,
		3 rd week	3. Permutations groups. Even and odd
			permutations. Alternating groups, Cayley's
			theorem,
		Last week	4. Center of a group and derived group of a
			group.
3.	3 rd	1 st week	1.Introduction to rings, subrings, integral
			domains and fields,
		2 nd week	2.Characteristics of a ring. Ring
		and a	homomorphisms,
		3 rd week	3. ideals (principle, prime and Maximal) and
			Quotient rings,
		Last week	4. Field of quotients of an integral domain.
4.	4 th	1 st week	1.Euclidean rings.
	-	2 nd week	2. Polynomial rings. Polynomials over the
			rational field. The Eisenstein's
			criterion,
		3 rd week	3.Polynomial rings over commutative rings,
		Last week	4.Unique factorization domain, R unique
			factorization domain implies so is $R[\hat{X}]$,
			X2,Xn]

CLASS: <u>B.Sc.(Hons) Mathematics-III Year V Sem</u> NAME OF PAPER – <u>Programming in C & Numerical Methods</u> PAPER CODE - <u>BML-503</u>

SR.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1.Programmer's model of a computer.
		&	Algorithms, Flow charts, Data types,
		2 nd week	
		3 rd week	2.Operators and
		&	expressions, Input / Output functions.
		Last week	
2.	2 nd	1 st week	1.Decisions control structure: Decision
			statements,
		2 nd week	2.Logical and conditional statements,
			Implementation of Loops,
		3 rd week	3.Switch Statement & Case control
			structures.
		Last week	4. Functions, Preprocessors and Arrays.
2	ard	1st wool	1 Stringer Character Data Tuna Standard
5.	3	1 WEEK	String handling Functions Arithmetic
			Operations on Characters
		2 nd week	2 Structures: Definition using Structures use
		2 WEEK	of Structures in Arrays and
			Arrays in Structures. Pointers:
		3 rd week	3. Solution of Algebraic and Transcendental
			equations: Bisection method, Regula-Falsi
			method, Secant method,
		Last week	4.Newton-Raphson's method.
			Newton's iterative method for finding pth
			root of a number.
4.	4 th	1 st week	1.Simultaneous linear algebraic equations:
		&	Gauss-elimination method, Gauss-Jordan
		2 ^{na} week	method, Triangularization method (LU
		ard	decomposition method). Crout's method,
		J ¹⁴ week	2. Cholesky Decomposition method. Iterative
		X Last	method, Jacobi's method, Gauss-Seidal's
		Last week	method, Kelaxation method.

CLASS: <u>B.Sc.(Hons) Mathematics-III Year V Sem</u> NAME OF PAPER – <u>Programming in C & Numerical Methods-Lab</u> <u>PRACITAL</u>

PAPER CODE - BMP-504

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st		Programming in C
		1st week	1. Generates first n prime numbers.
		&	2. Calculate compound interest.
		2 nd week	3. Solve a quadratic equation.
		3 rd week	4. Swap two numbers using pointers.
		&	5. Pattern matching of two strings.
		Last week	
2.	2 nd	1 st week	6. Count number of vowels and consonants in a
			sentence.
		2 nd week	7. Reverse a string character by character and word
			by word.
		3 rd week	8. Encryption and decryption of a string.
		Last week	9. Find GCD of two integers and use it to find the
			GCD of three integers using functions.
-	ord	1 st 1	
3.	3 ^{ru}	1 st week	10. Secant Method.
		Å.	11. Regula-Falsi Method.
		2 nd week	12. Bisection Method.
		3 rd week	13. Newton- Raphson Method.
		&	14. Jacobi- Method.
		Last week	
4.	4 th	1 st week	15. Gauss Elimination Method .
		2 nd week	16. Gauss Seidel Method .
		3 rd week	17. Gauss Jordan Method.
		Last week	18. Crout's Method.

CLASS: <u>B.Sc.(Hons) Mathematics-III Year V Sem</u> NAME OF PAPER – <u>Sequence and Series</u> PAPER CODE - BML-505

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1.Boundedness of the set of real numbers; least
			upper bound, greatest lower bound of a set,
		2 nd week	2.neighborhoods, interior points, isolated points,
			limit points,
		3 rd week	3.open sets, closed set, interior of a set, closure of
			a set in real numbers and their properties. Bolzano-
		Last week	4.Weiestrass theorem,
			Open covers, Compact sets and Heine-Borel
			Theorem.
2.	2^{nd}	1 st week	1.Sequence: Real Sequences and their
			convergence, Theorem on limits of sequence,
			Bounded and monotonic sequences,
		2 nd week	2.Cauchy's sequence, Cauchy general principle of
			convergence, Subsequences, Subsequential limits.
		3 ^{ra} week	3.Infinite series: Convergence and divergence of
			Infinite Series, Comparison Tests of
			positive terms Infinite series, Cauchy's general
		.	principle of Convergence of series,
		Last week	4.Convergence and divergence of geometric series,
2	2 rd	1stal-	Hyper Harmonic series or p-series.
5.	3	Pr 2 nd wool	1.Infinite series: D-Alembert's failo test, Raabe's
		3rd wook	2 Bertrand's test Cauchy's nth root test. Gauss
			Test Cauchy's integral test Cauchy's
		Last week	condensation test
4.	4 th	1 st week	1 Alternating series. Leibnitz's test, absolute and
	_		conditional convergence.
		2 nd week	2.Arbitrary series:
			abel's lemma, Abel's test, Dirichlet's test,
			Insertion and removal of parenthesis,
			rearrangement
			of terms in a series, Dirichlet's theorem,
		3 rd week	3.Riemann's Re-arrangement theorem,
			Pringsheim's theorem (statement only),
			Multiplication of series,
		Last week	4.Cauchy product of series,
			(definitions and examples only) Convergence and
			absolute convergence of infinite
			products.

CLASS: <u>B.Sc.(Hons)</u> <u>Mathematics-III Year V Sem</u> NAME OF PAPER – <u>Operations Research -II</u> PAPER CODE - B<u>ML-506</u>

SR. NO	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1.Inventory Control: introduction of
			inventory, factors affecting inventory,
		2 nd week	2.Inventory models, Deterministic models:
		3 rd week	3. Economic order quantity model when
			shortages are allowed/not allowed,
		Last week	4. price discounts model, multi-item
			inventory models.
2.	2 nd	1 st week	1. Queuing Theory : Basic characteristics of
		& 2 nd	queuing system, Birth-death equations,
		week	
		3 rd week	2. Steady state solution of Markovian queuing
		&	models with single and multiple servers with
		Last week	infinite capacity (M/M/1 and M/M/c), and
			with limited capacity (M/M/1/K and
	-		M/M/c/K).
3.	3 rd	1 st week	1.Sequencing problems: Processing of n jobs
		&	through 2 machines, n jobs through 3
		2 nd week	machines, 2 jobs through m machines, n jobs
		and	through m machines.
		3 rd week	2.Replacement problems: Replacement of
			items whose running cost increases with time,
		Last week	4. Replacement policies for the items that fail
			completely - Individual and the group
4	⊿th	1st wool	1 DEDT and CDM: Introduction of DEDT and
4.	4	1 st week	CDM
		and wook	Crivi, 2 Earliest and latest times
		3 rd wook	2. Determination of critical path and various
		JWUUN	types of floats
		Last week	4 Probablistic and cost considerations in
		Lust WCCK	project
			scheduling

Odd Semesters

CLASS: M<u>.Sc. Mathematics-I Year I Sem</u> NAME OF PAPER–<u>Algebra</u> PAPER CODE -<u>MAL-511</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1^{st}	1st week	1.Zassenhaus's lemma, Normal and Subnormal
			series. Scheiers Theorem,
		2 nd week	2.Composition Series. Jordan-Holder theorem.
		3 rd week	3.Commutators and their properties.
		Last week	4. Three subgroup lemma of P. Hall.
2.	2^{nd}	1 st week	1.Central series. Nilpotent groups.
		2 nd week	2.Upper and lower central series and their properties.
			Invariant (normal) and chief series.
		3 rd week	3.Solvable groups. Derived series.
		Last week	4.Field theory. Prime fields.
3.	3 rd	1 st week	1.Extension fields. Algebraic and transcendental
	-		extensions.
		2 nd week	2.Algebraically closed field. Conjugate elements.
			Normal extensions.
		3 rd week	3Separable and inseparable extensions.
		Last week	4.Perfect fields. Construction with ruler and campass.
			Finite fields
4.	4 th	1 st week	1.Roots of unity. Cyclotomic Polynomial in \Box n (x).
	-	2 nd week	2.Primitive elements. Automorphisms of extensions.
		3 rd week	3.Galois extension. Fundamental theorem of Galois
			theory.
		Last week	4. Solutions of polynomial equations by radicals.
			Insolvability of the general equation of degree 5 by
			radicals.

CLASS:M<u>.Sc. Mathematics-I Year I Sem</u> NAME OF PAPER –<u>Real Analysis</u> PAPER CODE -<u>MAL-512</u>

SR.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week & 2 nd week	1.Definition and existence of Riemann-Stieltjes integral, properties of the integral, integration and differentiation,
		3 rd week & Last week	2.the fundamental theorem of Calculus, integration of vector-valued functions, rectifiable curves
2.	2 nd	1 st week 2 nd week	 Sequences and series of functions, point-wise and uniform convergence, Cauchy criterion for uniform convergence, Weierstrass M-test, Abel's and Dirichlet's tests for uniform convergence, uniform convergence and
		3 rd week Last week	continuity, 3.uniform convergence and Riemann-Stieltjes integration, uniform convergence and differentiation, 4.Weierstrass approximation theorem, Power series, uniqueness theorem for power series, Abel's theorems.
3.	3 rd	1 st week 2 nd week	 1.Functions of several variables, linear transformations, derivatives in an open subset of R□, chain rule, 2.partial derivatives, interchange of the order of differentiation derivatives of higher orders
		3 rd week Last week	 3.Taylor's theorem, Inverse function theorem, Implicit function theorem, 4.Jacobians, extremum problems with constraints, Lagrange's multiplier method.
4.	4 th	1 st week 2 nd week	1.Set functions, intuitive idea of measure, elementary properties of measure, 2.measurable sets and their fundamental properties, 3 Lebesque measure of sets of real numbers, algebra of
		Last week	measurable sets, 4.Borel sets, equivalent formulation of measurable sets in terms of open, closed, F_{\Box} and G_{\Box} sets, non measurable sets.

CLASS:M<u>.Sc. Mathematics-I Year I Sem</u> NAME OF PAPER –<u>Mechanics</u> PAPER CODE -<u>MAL-513</u>

SR.	MONTHS	PERIOD	TOPICS
<u>NU.</u> 1	1 st	1st wook	1 Moments and products of Inertia Theorems of
1.	1		parallel and perpendicular axes principal axes
		2 nd week	2. Themomental ellipsoid. Equimomental systems.
		2 week	Coplanar distributions. Generalized cooordinates.
		3 rd week	3.Holonomic and Non-holonomic systems.
			Scleronomic and Rheonomic systems.
		Last week	4.Lagrange's equations for a holonomic system.
2.	2^{nd}	1 st week	1.Lagrange's equations for a conservative and impulsive
			forces. Kinetic energy as quadratic function of
			velocities.
		2 nd week	2. Generalized potential, Energy equation for
			conservative fields. Hamilton's variables. Donkin's
		ard	3 Hamilton canonical equations Cyclic coordinates
		3 rd week	Routh's equations.
		Lost wook	4. Poisson's Bracket. Poisson's Identity. Jacobi-Poisson
		Last week	Theorem.
3	3rd	1 st week	1. Hamilton's Principle. Principle of least action.
5.	0		Poincare Cartan Integral invariant. Whittaker's
			equations.
		2 nd week	2.Jacobi's equations. Hamilton-Jacobi equation. Jacobi
			theorem. Method of separation of variables. Lagrange
			Brackets.
		3 ^{ra} week	5. Condition of canonical character of a transformation
			4 Invariance of Lagrange brackets and Poisson brackets
		Last week	under canonical transformations.
4	⊿th	1 st week	1.Gravitation: Attraction and potential of rod disc
7.		I WEEK	spherical shells and sphere.
		2 nd week	2.Laplace and Poisson equations. Work done by self-
			attracting systems.
		3 rd week	3.Distributions for a given potential. Equipotential
			surfaces.
		Last week	4.Surface and solid narmonics. Surface density in terms of surface harmonics

CLASS:M<u>.Sc. Mathematics-I Year I Sem</u> NAME OF PAPER –<u>Ordinary Differential Equation-I</u> PAPER CODE -<u>MAL-514</u>

SR.	MONTHS	PERIOD	TOPICS
NU.		1 - 4 1-	1 Initial and an and the second state of internal
1.	1 st	1st week	1.Initial-value problem and the equivalent integral
			equation, E-approximate solution, Cauchy-Euler
		and a	construction of an ε -approximate solution,
		2 nd week	2.Equicontinuous family of functions, Ascoli-Arzela
			theorem, Cauchy-Peano existence theorem.
		3 ^{ra} week	3.Uniqueness of solutions, Lipschitz condition,
		Last week	4.Picard-Lindelof theorem for local existence and
			uniqueness of solutions, solution of initial-value
			problems by Picard method.
2.	2^{nd}	1 st week	1.Approximate methods of solving first-order
			equations: Power Series Methods, Numerical
			Methods.
		2 nd week	2 Continuation of solutions, Maximum interval of
			existence,
		3 rd week	3.Extension theorem, Dependence of solutions on
			initial conditions and function.
		Last week	4. Matrix method for homogeneous first order
			systems, nth order equation
3.	3 rd	1 st week	1.Total differential equations: Condition of
			integrability,
		2 nd week	2.Methods of Solution.
		3 rd week	3.Gronwall's differential inequality,
		Last week	4.comparison theorems involving differential
			inequalities.
4.	4 th	1 st week	1.Zeros of solutions, Sturms separation and
			comparison theorems.
		2 nd week	2. Oscillatory and nonoscillatory equations, Riccati's
			equation and its solution,
		3 rd week	3. Pruffer transformation, Lagrange's identity and
			Green's formula for second-order equation.
		Last week	4. Sturm-Liouville boundary-value problems.
			properties of eigen values and eigen functions.

CLASS:M<u>.Sc. Mathematics-I Year I Sem</u> NAME OF PAPER –<u>Complex Analysis-I</u> PAPER CODE -<u>MAL-515</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1.Cauchy Riemann Equations, Analytic functions,
			Reflection principle,
		2 nd week	2.Complex Integration, Antiderivatives,
		3 rd week	3.Cauchy-Goursat Theorem, Simply and Multiply connected domains,
		Last week	4.Cauchy's Integral formula, Higher Order derivatives,
2.	2 nd	1 st week	1.Morera's theorem, Cauchy's inequality,
		2 nd week	2.Liouville's theorem, The fundamental theorem of
			Algebra,
		3 rd week	3. Maximum Modulus Principle, Schwarz lemma,
		Last week	4. Poisson's formula, Taylor's Series, Laurent's Series.
3.	3rd	1 st week	1.Isolated Singularities, Meromorphic functions,
	C	2 nd week	2. Argument principle, Rouche's theorem,
		3 rd week	3.Residues, Cauchy's residue theorem,
		Last week	4. Evaluation of Integrals, MittagLeffler's expansion
			theorem.
4.	4 th	1 st week	1.Branches of many valued functions with special
	-		reference to arg z, $\text{Log } z$, z_a .
		2 nd week	2. Bilinear transformations, their properties and
		3 rd week	3.classification, definition and examples of conformal
		&	mapping.
		Last week	

CLASS:M.Sc. Mathematics-I Year I Sem NAME OF PAPER –<u>PROGRAMMING WITH FORTRAN (THEORY)</u> PAPER CODE -<u>MAL-516</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1.Computer Programming in Fortran 90/95:
			Numerical constants and variables, arithmetic
			expressions; implicit declaration, named constants,
			input/output;
		2 nd week	2.List directed input/output statements,
		3 rd week	3.Format specifications. Declarations including
			KIND specifications,
		Last week	4.Use of complex variables, Pointers
2.	2^{nd}	1 st week	1 Logical expressions and control flow; conditional
			flow; IF structure, Block DO loop Counted
			controlled Loops.
		2 nd week	2.arrays; input/output of arrays, arrays with variable
			size using ALLOCATABLE statement,
		3 rd week	3.arrays handling functions,
		Last week	4. multidimensional arrays
3.	3 rd	1 st week	1.Strings, declaration of character variables,
	·	2 nd week	2. character handling functions, operators on strings.
		3 rd week	3. Subprograms, Types of Subprograms, Significance
			Functions; subroutines;
		Last week	4. Procedures with array arguments. Recursion
4	4 th	1 st week	1. Derived types. Elements of derived type, arrays and
	T		derived type
		2 nd week	2 Processing files. Sequential file
		3 rd week	3 Direct Access file: creating and closing a file and
		&Last week	4. Accessing elements using pointers with example

CLASS:M<u>.Sc. Mathematics-II Year IIISem</u> NAME OF PAPER –TOPOLOGY PAPER CODE -<u>MAL-631</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1.Definition and examples of topological spaces.
			Closed sets. Closure
		2 nd week	.2. Dense subsets.Neighbourhoods. Interior, exterior
			and boundary points of a set. Accumulation points
			andderived sets.
		3 rd week	3.Bases and sub-bases. Subspaces and relative
			topology. Alternate methods of defining a topology in
			terms of Kuratowski Closure Operator and
			Neighbourhood Systems
		Last week	4 Continuous functions and homeomorphism
		Last week	+.continuous functions and nomeomorphism.
2	7 nd	1 st week	1 Compactness Continuous functions and compact
4.			sets
		2 nd week	2 Basic properties of compactness
			Compactness and finite intersection property
			Sequentially and countably compact sets
		3rd week	3 Local compactness and one point
		5 WEEK	compactification
		I ast wook	A Compactness in metric spaces. Equivalence of
		Last week	compactness countable compactness and sequential
			compactness, countable compactness and sequential
2	2rd	1 st week	1 Connected spaces. Connectedness on the real line
5.	5	I WEEK	Components
		2 nd week	2 Locally connected spaces First and Second
		2 WCCK	Countable spaces
		3rd wook	3 Lindelof's theorem Senarable snaces Second
		J WUUK	Countability and Separability
		Last week	A Separation axioms TO T1 and T2 spaces Their
		Last week	characterization and basic properties
			characterizationalité basic properties.
1	A th	1 st week	1 Regular and normal spaces. Urysohn's Lemma, T3
4.	4	IWCCK	and TA spaces
		2nd wool	2 Complete regularityand Complete normality
		2 WEEK	2.00 mpiete regularity and 00 mpiete normality.
		ard wool	2 Product topological spaces. Projection manning
		S WEEK	A Tychonoff product topology in terms of standard
		a Last week	sub base and its characterizations
		1	sub-base and its characterizations.

CLASS:M.Sc. Mathematics-II Year IIISem NAME OF PAPER-PARTIAL DIFFERENTIAL EQUATIONS PAPER CODE -MAL-632

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1Solution of Partial Differential Equations Transport
			Equation-Initial value Problem.
		2 nd week	2.Non-homogeneous Equation. Laplace's Equation-
		3 rd week	3.Fundamental Solution, Mean Value
		Last week	Formulas, Properties of Harmonic Functions,
			4. Green's Function, Energy Methods
2.	2^{nd}	1 st week	1. Wave Equation-Solution by Spherical Means, Non-
			homogeneous Equations,
		2 nd week	2.Energy Methods.Poisson's formula,
		3 ^{ra} week	3.Kirchoff's formula, D. Alembert's formula,
		Last week	4.Uniqueness of Solution Domainof Dependence of
			Solution.
3.	3 rd	1 st week	1.Heat Equation-Fundamental Solution, Solution of
		and I	initial value problem, Non Homogeneous Equation,
		2 nd week	2.Mean Value Formula. Nonlinear First Order PDE-
		ard	Complete Integrals,
		3 rd week	3.Envelopes, Characteristics, Hamilton-Jacobi
		Logt mode	Equations,
		Last week	4. Hamilton's ODE, Hopi-Lax Formula, weak
4	Ath	1st woolr	Depresentation of Colutions Congression of
4.	4	1 week	Variables Similarity Solutions (Dana and Travelling
		2nd wool	2 Wayes Solitons Similarity under Scaling)
		2 WEEK	2. waves, Solitons, Similarly under Scaling), 3 Fourier and Laplace Transform Honf-Cole
		J WEEK	Transofrm
		I act wook	Hodograph and Legendre Transforms Potential
		Last WCCK	Functions
		1	1 •
CLASS:M<u>.Sc. Mathematics-II Year IIISem</u> NAME OF PAPER –MECHANICS OF SOLIDS-I PAPER CODE -<u>MAL-633</u>

SR. NO	MONTHS	PERIOD	TOPICS
1	1 st	1 at woolr	1 Contacion Tanzan Coordinate transformation
1.	1 st	1st week	1. Cartesian Tensor: Coordinate transformation,
			Cartesian Tensor of different order, Sumor difference
		and	and product of two tensors.
		2week	2. Contraction theorem, Quotient law, Symmetric
		ard meals	2 Alternate tensors, Kronecker lensor,
		5 week	5. Alternate tensor and relation between them,
		T and some all	Scalarinvariant of second order tensor,
		Last week	4. Eigen values & vectors of a symmetric second
			order tensor, Gradient, divergence & curl of a tensor
	and	18t	Tield.
2.	2 nd	1. week	1. Analysis of Strain: Affine transformations.
		and	Infinitesimal affine deformation
		2 nd week	2. Geometrical interpretation of the components of
			strain. Strain quadric of Cauchy.Principal strains
		ard	andinvariants.
		3 rd week	3.General infinitesimal deformation.Saint- Venant's
		.	equations of Compatibility.
		Last week	4Analysis of Stress: Stress tensor.Equations of
	e vil	d st 1	equilibrium. Transformation of coordinates.
3.	3 ^{ra}	1 st week	1.Stress quadric of Cauchy. Principal stress and
		and	invariants.
		2 nd week	2.Maximum normal and shearStresses
		3 rd week	3.Equations of Elasticity: Generalised Hooke's law.
		Last week	4.Homogeneous isotropic media.
1	∕1th	1 st wook	1 Elastic moduli for isotropic media
4.	4	2 nd wook	2 Equilibrium and dynamic equations for an
		2 WCCK	isotropicelastic solid
		3 rd week	3 Strain energy function and its connection with
		J WUUK	Hooke's law
		Last week	4 Beltrami-Michellcompatibility equations Saint-
		Last week	Venant's principle

CLASS:M<u>.Sc. Mathematics-II Year IIISem</u> NAME OF PAPER –Computing Lab-II (MATLAB Programming & Applications) PAPER CODE -<u>MAL-634</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1^{st}	1st week	1.User-Defined Functions and Function Files: Main
			Features of a Function file, Saving aFunction File,
		2 nd week	Using a User-Defined Function,
			2. Comparison between Script Files and Function
		3 rd week	Files, Anonymous and Inline Functions: Anonymous
			Functions, Inline Functions.
			3.Functions:Using Function Handles for Passing a
			Function into a Function, Using a Function Name for
			Passing a Function into a Function.
		Last week	4.Subfunctions, Nested Functions.
2.	2 nd	1 st week	1.Polynomials: Value of a Polynomial. Roots of a
	-		Polynomial, Addition, Multiplication and
			Division of Polynomials
		2 nd week	2 Derivatives of Polynomials Curve Fitting with
			Polynomials The polyfit Function Curve Fitting
		3rd week	with Functions other than Polynomials
		Last week	3 Applications in Numerical Analysis: Solution of an
		Last week	Equation with one Variable Minimum or a
			Maximum of a Function
			A Numerical Integration Ordinary Differential
			Fountions
2	Ord	1st wool	1 Three Dimensional Plots: Line Plots Mash and
З.	5	1 WEEK	Surface Diete Diete with Special Graphics
		and wool	2 The View Command Symbolic Mathy Solving
		2 week	2. The view Command. Symbolic Wath. Solving
		ard moole	Algebraic Equations,
		5 week	S.Differentiation, Integration, Solving an
			UrdinaryDifferential Equation, Plotting Symbolic
		T and some all	Expressions,
		Last week	4. Numerical Calculations with Symbolic
	Ath	1st 1	Expressions.
4.	4 ^{un}	1 st week	1. Numerical Methods - Interpolation : Lagrange's
		and I	interpolation formula,
		2 nd week	2.Newton Gregoryforward interpolation formula,
		ard -	Newton Gregory backward interpolation formula.
		3 rd week	3.Solution of asystem of Linear Equations: (Unique
			solution case only) :Gauss – Elimination Method,
			Gauss – Jordan Method.
		Last week	4.Solution of Ordinary Differential Equations:
			Euler's Method, Euler's Modified Method ,
			RungeKutta Second and Fourth order Method

CLASS:M<u>.Sc. Mathematics-II Year IIISem</u> NAME OF PAPER –<u>FLUID MECHANICS</u> PAPER CODE -<u>MAL-636</u>

SR.	MONTHS	PERIOD	TOPICS
10.	d of		
1.	1 st	Ist week	1.Basics of Fluid Kinematics: General consideration
		and a	of fluid, Lagrangian and Eulerian approach,
		2 nd week	2.Substantial derivative, Stream lines, Path lines,
			Streak lines, Divergence of a flow field,
		3 rd week	3. Translation, deformation and rotation of fluid
			element, Irrotational and rotational motions.
			Vortex lines, Reynolds Transport Theorem,
		Last week	4.Equation of Continuity. Euler's equation of motion,
			Bernoulli's theorem, Kelvin's circulation theorem,
			Vorticity equation.
2.	2 nd	1 st week	1. Energy equation for an incompressible flow.
	-	2 nd week	2.Boundary conditions. Kinetic energy of liquid.
		3 rd week	3.Axially symmetric flows. Motion of a sphere
			through a liquid at rest at infinity.
		Last week	4 Liquid streaming past a fixed sphere force on a
		Lust week	sphere Equation of motion of a sphere
3	3 rd	1 st week	1Vorticity and Rotation. The Velocity potential o
5.	5	I WCCK	Stream functions ψ . Stokes stream functions
		2nd wook	2 Uniform flow Sources Sinks and doublets Images
		2 WCCK	in a rigid impermeable infinite plane and in
			importante and in important and in important and in
		ard wool	2 Conformal manning Milna Thomson Cirala
		5 week	s.comornal mapping, while-monitoric circle
		Lost wook	A Placing theorem. Joukovskij transformation
		Last week	4. Diasius meoremi, joukovskii transformation,
4	A th	1st wool	1Two dimensional irretational motion produced by
4.	4	1 week	motion of circular
		and	motion of circular,
		2 week	2.co-axial and emptic cylinders in an infinite mass of
		ard man	Iquia,
		J week	5. Vortex motion and its elementary properties,
		Last week	4.Keivin's proof of permanence, motion due to
			rectilinear vortices

CLASS:M.Sc. Mathematics-II Year IIISem NAME OF PAPER –<u>ADVANCED DISCRETE MATHEMATICS</u> PAPER CODE -<u>MAL-637</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1^{st}	1st week	1.Formal Logic - Statements, Symbolic,
			Representation and Tautologies, Quantifiers,
			PropositionLogic.
		2 nd week	2. Lattices - Lattices as partially ordered sets, Their
			properties, Lattices as Algebraicsystems,
		3 rd week	3. Some special Lattices, e.g., complete,
			complemented and Distributive Lattices. Sets
			4.Some Special Lattices e.g., Bounded,
		Last week	Complemented & Distributive Lattices.
2.	2 nd	1 st week	1.Boolean Algebra - Boolean Algebra as Lattices,
			Various Boolean Identities, The Switching
			Algebra example, Join - irreducible elements,
		2 nd week	2. Atoms and Minterms, Boolean Forms and Their
			Equivalence, Minterm Boolean Forms,
		3 rd week	3. Sum of Products canonical Forms, Minimization
			ofBoolean Functions,
		Last week	4. Applications of Boolean Algebra to Switching
			Theory (using AND, OR andNOT gates).
3.	3 rd	1 st week	Graph Theory - Definition of Graphs, Paths, Circuits,
			Cycles and Subgraphs, InducedSubgraphs,
		2 nd week	2. Degree of a vertex, Connectivity, Planar Graphs
			and their properties,
		3 rd week	3.Euler'sFormula for Connected Planar Graph,
		Last week	4.Complete and Complete Bipartite Graphs,
4.	4 th	1 st week	1.Trees, Spanning Trees, Minimal Spanning Trees,
			Matrix Representation of Graphs,
		2 nd week	2.Euler's theorem on the Existence of Eulerian Paths
			and circuits,
		3 rd week	3.Directed Graphs, Indegree andoutdegree of a
		Last week	vertex, Weighted undirected Graphs,
			4.Strong Connectivity and Warshall'sAlgorithm,
			Directed Trees, Search Trees, Tree Traversals.

B.A. & B.Sc.

Even Semesters

CLASS: B.Sc./B.A. -I Year II Sem NAME OF PAPER - <u>Ordinary Diff. Eqn. & Laplace Transform</u> PAPER CODE(for B.Sc) -<u>CML-206</u> PAPER CODE(for B.A.) - BAMH-104

erential equation.
ting factors.
tions solvable for
on reducible to
esian coordinates
curves Linear
coefficients.
hary differential
eous
s of second order:
ation by changing
the independent
rameters.
1
nce theorem for
ty of the Laplace
and integrals,
-1
olution theorem,
equations using
-1

CLASS: B.Sc./B.A. -I Year II Sem NAME OF PAPER – <u>VECTOR CALCULUS AND GEOMETRY</u> PAPER CODE(for B.Sc.) -<u>CML-207</u> PAPER CODE(for B.A.) - BAMH-105

SR	MONTHS	PERIOD	TOPICS
NO.		IERIOD	101105
1.	1st	1 st week 2 nd week 3 rd week Last week	 Scalar and vector product of three vectors, derivative along a curve, directional derivatives. Gradient of a scalar point function.Geometrical interpretation of grad φ, Divergence and curl of a vector point function. Gradient, divergence and curl of sums and product and their related vector identities. Laplacian operators.
2.	2nd	1 st week 2 nd week 3 rd week Last week	 Line integral, surface integral, volume integral Gauss divergence theorem, Divergence theorem in Cartesian coordinates Green theorem, Stoke's theorem (relation between line and surface integral) Stoke's theorem in Cartesian form. Green's Theorem in plane as special case of Stoke's Theorem
3.	3rd	1 st week 2 nd week 3 rd week Last week	 1.General equation of second degree, 2 Tracing of conics.System of conics 3 Tangent at any point to the conic,Director circle of conic, 4.tangent and normal to the conic.
4.	4th	1 st week 2 nd week 3 rd week Last week	 Sphere : plane section of a sphere. Sphere through a given circle. 2. Intersection of two spheres. Co-axial system of spheres. 3. Cones: Right circular cone, enveloping cone and reciprocal cone. 4.Cylinder: Right circular cylinder and enveloping cylinder

CLASS: B.<u>Sc. Mathematics-I Year 2nd Sem</u> NAME OF PAPER–Mathematics Lab-II (Practical) PAPER CODE (for B.Sc.) - <u>CMP-210</u> PAPER CODE (for B. A.) – BAMH (P)-106

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week & 2 nd week 3 rd week & Last week	 Part A: Introduction to Programming in C Strings: Character data type, Standard string handling functions, arithmetic operations on characters. Structures: definition, using structures, use of structures in arrays and arrays in structures, Functions.
2.	2 nd		Part B: Following Program should be done as Practical:-
		1 st week	16. Program to add two matrices.
		2 nd week	17. Program to multiply two matrices.
		3 rd week	18. Program to find the inverse of a matrix.
		Last week	19. Program to find transpose of a matrix.
3.	3 rd	1 st week	20. Program to find the sum of a series.
		2 nd week	21. Program to sort an entire array using bubble short.
		3 rd week	22. Program to find trace of 3X3 Matrix.
		Last week	23. Program to find largest of three numbers using function.
4.	4 th	1 st week	24. Program to find factorial of a number using
		2 nd week	25. Program to generate n Fibonacci terms using recursion.
		3 rd week	26. Program to count number of vowels and consonants
		Last week	27. Program to print a salary chart for employee of a company.

CLASS: B.Sc./B.A. - II Year IV Sem NAME OF PAPER – Partial Differential Equations & Special Functions PAPER CODE(for B.Sc) -<u>CML-406</u> PAPER CODE(for B.A.) - BAMH-204

SR.	MONTHS	PERIOD	TOPICS
<u>1.</u>	1st	1 st week	1.Partial differential equations: Formation, order and
		2 nd week	degree. 2.Linear and non-linear partial differential equations of the first order: Complete solution
		3 rd week	3. Singular solution, General solution, Solution of Lagrange's linear equations.
		Last week	4. Charpit's general method of solution, Compatible systems of first order equations, Jacobi's method.
2.	2nd	1 st week	1. Linear partial differential equations of second and higher orders. Linear and non linear homogeneous and
		2 nd week	nonhomogeneousequations with constant coefficients, 2.Partial differential equation with variable coefficientsreducible to equations with constant coefficients, their complimentary functions and particular integrals, 3.Equations reducible to linear equations with constant
		3 rd week	coefficients. 4.Method of separation of variables: Solution of
		Last week	Laplace's equation, Wave equation (one and two dimensions), Diffusion (Heat) equation (one and two dimension) in Cartesian Co-ordinate system.
3.	3rd	1 st week	1.Classification of linear partial differential equations of second order, hyperbolic, parabolic and elliptic types,
		2 nd week	 Reduction of second order linear partial differential equations to Canonical (Normal) forms and their solutions, Solution of linear hyperbolic equations. Monge's
		3 rd week	method for partial differential equations of second order, Cauchy's problem for second order partial differential equations,
			4. Characteristic equations and characteristic curves of second order partial differential equation.
		Last week	
4.	4th	1 st week	1.Series solution of differential equations – Power series method
		2 nd week	2.Bessel equation and its solution: Besselfunctions and their properties-Convergence, recurrence, Relations and generating functions, Orthogonality of
		3 rd week	Bessel functions. 3.Legendre differential equation and its solution: Legendre function and its properties- Recurrence Relations and generating functions. 4. Orthogonality of Legendre polynomial. Rodrigues'
		Last week	Formula forLegendre Polynomial

CLASS: B.Sc./B.A. - II Year IV Sem NAME OF PAPER – <u>MECHANICS-I</u> PAPER CODE(for B.Sc) -<u>CML-407</u> PAPER CODE(for B.A.) - BAMH-205

SR	MONTHS	PERIOD	TOPICS
		I LINIOD	
NU			
1.	1st	1st week	1. Forces in two dimension (co-planner), triangle law
			and polygon law of forces,
		2nd week	2.Lami's theorem, resultant of concurrent and
			coplanar forces, conditions of equilibrium of
			concurrent forces.
		3rd week	3.Parallel forces: like parallel and unequal unlike
			parallel forces, resultant and centre of parallel forces;
		Last week	4.Moments and Couples.
2.	2nd	1st week	1.Forces in three dimensions, Poinsot'scentral axis,
		2nd week	2. Conditions for the reduction of a general system of
			forces in space to a single force, equations of central
			axis,
		3rd week	3.Wrenches: Definition and basic laws, resultant
			wrench of two wrenches, locus of the central axis of
			two wrenches,
		Last week	4.; Null lines and null planes
3.	3rd	1st week	1.Velocity and acceleration along a plane curve,
		2nd week	2.component of velocity and acceleration in radial,
			transverse, tangential and normal directions,
		3rd week	3.Relative velocity and acceleration.
		Last week	4. Simple harmonic motion (SHM).
4.	4th	1st week	1.Newton's laws of motion, Central Orbits,
			differential equations of Central Orbits in polar form
		2 1	and in pedalform,
		2nd week	2. areal velocity, elliptic, hyperbolic and parabolic
			definition and lowe velocity from infinity
		and wook	2 Konlor's love of planetery motion, aquivalance of
		JIU WEEK	S. Kepler's laws of planetary motion, equivalence of Kepler's laws of
			nlanetary motion and
		Last week	A Newton's law of gravitation motion under the
		Last week	inverse square law
4.	4th	Last week 1st week 2nd week 3rd week Last week	 4. Simple harmonic motion (SHM). 1.Newton's laws of motion, Central Orbits, differential equations of Central Orbits in polar form and in pedalform, 2. areal velocity, elliptic, hyperbolic and parabolic orbit, velocity in a circle, apse and apsidal distances: definition and laws, velocity from infinity, 3.Kepler's laws of planetary motion, equivalence of Kepler's laws of planetary motion and 4.Newton's law of gravitation, motion under the inverse square law.

CLASS: B.<u>Sc. Mathematics-II Year 4th Sem</u> NAME OF PAPER–Mathematics Lab-IV (Practical) PAPER CODE (for B.Sc.) - <u>CMP-410</u> PAPER CODE (for B. A.) – <u>BAMH (P)-206</u>

SR.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week & 2 nd week 3 rd week & Last week	 Write down and execute the following programs using C-Programming Language 1. To solve the system of linear equations using Gauss -elimination method. 2. To solve the system of linear equations using Gauss -Seidal iteration method.
2.	2 nd	1 st week & 2 nd week 3 rd week & Last week	 3. To solve the system of linear equation using Gauss –jordan method. 4. To find the largest eigen value of a matrix by Power -method.
3.	3 rd	1 st week & 2 nd week 3 rd week & Last week	 5. To integrate numerically using Trapezoidal rule. 6. To integrate numerically using Simpson's one- third rule. 7. To integrate numerically using Simpson's three- eighth rule.
4.	4 th	1 st week & 2 nd week 3 rd week & Last week	 8. To find numerical solution of ordinary differential equations by Euler's method/ Modified Euler's method. 9. To find numerical solution of ordinary differential equations by Runge -Kutta method.

CLASS: B.Sc./ B.A. III Year VI Sem NAME OF PAPER - LINEAR ALGEBRA PAPER CODE (for B.Sc.) – CML-605(i) PAPER CODE (for B.A.) –BAMH-304(i)

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1st	1 st week 2 nd week 3 rd week	 Vector spaces, subspaces, Sum and Direct sum of subspaces, Linear span, Linearly Independent and dependent subsets of a vector space.
		Last week	4. Finitely generated vector space, Existence theorem for basis of a finitely generated vactor space,
2.	2nd	1 st week	1 . Finite dimensional vector spaces, Invariance of the number of elements of bases sets, Dimensions,
		2 nd week	2. Quotient space and its dimension
		3 rd week	3. Linear transformations and linear forms on vactor spaces, Vactor space of all the linear transformations
		Last week	4. Null Space, Range space of a linear transformation, Rank and Nullity Theorem
3.	3rd	1 st week	 Algebra of Liner Transformation Minimal Polynomial of a linear transformation
		2 nd week	Singular and non-singular linear transformations.
		3 rd week	3. Matrix of a linear Transformation, Change of basis.
		Last week	4.Eigen values and Eigen vectors of linear transformations
4.	4th	1 st week	1. Inner product spaces, Cauchy-Schwarz inequality,
		2 nd week	2.Orthogonal complements, Orthogonal sets and Basis
		3 rd week	3. Bessel's inequality for finite dimensional vector spaces,
		Last week	4.Gram-Schmidt, Orthogonalizationprocess,Adjoint of a linear transformation and its properties, Unitary Linear transformations.

CLASS: B.Sc./B.A. - III Year VI Sem NAME OF PAPER –MECHANICS II PAPER CODE(for B.Sc) -<u>CML-606(i)</u> PAPER CODE(for B.A.) - <u>BAMH-305(i)</u>

SR.	MONTHS	PERIOD	TOPICS
NO			
1.	1st	1st week 2nd week	 1.Analytical conditions of equilibrium of co-planar forces: Equilibrium of three forces, conditions of equilibrium, trigonometric theorem's, 2.conditions of equilibrium of co-planar forces (First, Second and Third form); Friction: Definition of friction and
		3rd week	basic laws, 3.problems based on equilibrium of rods and ladders; Centre of gravity: Basic concepts and definitions,
		Last week	4.centre of gravity of a uniform rod, a thin uniform lamina in the form of a parallelogram, a thin uniform triangular lamina, three uniform rods forming a triangle, a uniform quadrilateral lamina, lamina in the form of a trapezium, centre of gravity of a body by integration.
2.	2nd	1st week	1. Motion of a particle attached to an elastic string, .
		2nd week 3rd week Last week	 Hooke's law, motion of horizontal and vertical elastic strings 2. Definition of work, Power and Energy, 3. work done by a variable force, work done in stretching an elastic string, principle of work and energy 4.Conservative system of forces, principle of conservation
3.	3rd	1st week 2nd week 3rd week Last week	 1Motion of a particle on smooth curves, 2. motion on the outside and inside of a smooth vertical circle, 3.cycloidal motion, 4.motion on a rough curve under gravity.
4.	4th	1st week 2nd week 3rd week Last week	 Projectile motion of a particle in a plane, velocity at any point of the trajectory, directions of projection for a particle, range and time of flight on an inclined plane,. directions of projection for a given velocity and a given range; range and time of fight down an inclined plane.

CLASS: B.Sc./B.A. - III Year VI Sem NAME OF PAPER – REAL AND COMPLEX ANALYSIS

PAPER CODE(for B.Sc) -<u>CML-607(i)</u> PAPER CODE(for B.A.) - <u>BAMH-306(i)</u>

SR.	MONTHS	PERIOD	TOPICS
NO			
•			
1.	1st	1 st week	1Definition and examples of metric spaces,
		2 nd week	neighborhoods,
		2 WCCK	closure and interior, boundary points,
		3 rd week	3.Subspace of a metric space, equivalent metrics,
		Last week	4 Cauchy sequences completeness Cantor's
		Lust week	intersection theorem.
2	2 J	1 st week	1 Dairo's actagony theorem Contraction Dringinla
2.	2nd	1 week	1. Barre's category theorem, Contraction Frinciple,
		2 nd week	2.Continuous functions, uniform continuity,
		3 rd week	compactness for metric spaces, 3 Sequential CompactnessBolzano-
		5 WEEK	WeierstrassProperty,
		Last week	4.Totalboundedness, finite intersection property,
			continuity in relation with compactness, connectedness.
3.	3rd	1 st week	11mproper integrals and their convergence,
		2 nd week	comparison tests, 2. Abel's and Dirichlet's tests
		3 rd week	3.Frullani's integral,
		Last week	4.Integral as a function of a parameter. Continuity,
			differentiability and integrability of an integral of a
			function of a parameter.
4.	4th	1 st week	1. Topology of complex numbers: Trigonometric,
			trigonometric functions.
		2 nd week	2. Extended complex plane, Stereographic projection
		3rd week	of complex numbers Continuity and differentiability
		JWUUK	3. Analytic functions, Cauchy-Riemann
		Last week	equations, harmonic conjugates, harmonic functions
			4 Construction of analytic functions: direct method
			and Milne-Thomson method

CLASS: B.Sc./ B.A. III Year VI Sem

SKILL ENHANCEMENT NAME OF PAPER – SOLID GEOMETRY PAPER CODE (for B.Sc.) – CML-608(i) PAPER CODE (for B.A.) –BAMH-307(i)

SR.	MONTHS	PERIOD	TOPICS
NO.		d st 1	
1.	1st	1 st week	Central Conicoids: Equation of tangent plane.
		&	
		2 nd week	
		3 rd week	Director sphere. Normal to the conicoids.
		&	
		Last week	
2.	2nd	1 st week	Polar plane of a point. Enveloping cone of a
		&	coincoid.
		2 nd week	
		3 rd week	
		&	Enveloping cylinder of a coincoid.
		Last week	
3.	3rd	1 st week	Paraboloids: Circular section,
		&	
		2 nd week	
		3 rd week	Plane sections of conicoids.
		&	
		Last week	
4.	4th	1 st week	Generating lines. Confocal conicoid.
		&	
		2 nd week	
		3 rd week	Reduction of second degree equations
		&	
		Last week	

B.Sc.(Hons)

Mathematics

Even Semesters

CLASS:<u>B.Sc.(Hons) Mathematics-I Year IISem</u> NAME OF PAPER – <u>Elementary Mathematics-II</u> PAPER CODE - B<u>ML-201</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1.Matrix Algebra : Introduction, types of matrices, addition and multiplication of matrix, transpose of
			matrix, concept of elementary row and column
			operations.
		2 nd week	2.Determinant and its properties, minors, cofactors.
			Application of determinants in finding area of
			triangle.
		3 rd week	3.Adjoint and inverse of square matrix.
		Last week	4.Solution of homogeneous and non-homogeneous
			linear equations and condition for solution.
	-		
2.	2^{nd}	1 st week	1.Differential Calculus : Differentiation of standard
			functions including function of a function (Chain
		and 1	rule).
		Z ^{ite} week	2.Differentiation of implicit functions, logarithmic
			differentiation, parametric differentiation, elements
		ardal-	of successive differentiation.
		3 rd week	3.Integral Calculus : Integration as inverse of
		Lost wool	differentiation, indefinite integrals of standard forms,
		Last week	4. Integration by parts, partial fractions and substitution Formal evolution of definite integrals
			substitution. Formai evaluation of definite integrais.
3	2 rd	1 st week	1 Ordinary Differential Fountions : Definition and
5.	5	I WEEK	formation of ordinary differential equations
			equations of first order and first degree.
		2 nd week	2.variable separable, homogeneous equations, linear
			equations (Leibnitz form) and differential equations
			reducible to these types,
		3 rd week	3.Linear differential equation of order greater than
			one with constant coefficients,
		Last week	4.complementary function and particular integrals.
	-		
4.	4 th	1 st week	1.Partial Differential Equations : Introduction and
			formation of P.D.E., solution of P.D.E.,
		2 nd week	2.linear equation of first order (Lagrange's
		ard	Equation), Non-Linear Equation of first order.
		3 rd week	5. vector Calculus: Differentiation of vectors, scalar
			and vector point functions, gradient of scalar field
		I act weak	A divergence and our of vector field and their
		Last week	+.urvergence and curr or vector field and their physical interpretation

CLASS:<u>B.Sc.(Hons) Mathematics-I Year II Sem</u> NAME OF PAPER – <u>Mathematics-II Calculus</u> PAPER CODE - BML-202

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1.Definition of the limit of a function. Basic
			properties of limits,
		2 nd week	2.Continuous functions and classification of
			discontinuities. Differentiability.
		3 rd week	3.Successive differentiation. Leibnitz theorem.
		Last week	4. Maclaurin and Taylor series expansions.
2	Ind	1 st wook	1 Asymptotes in Cartesian coordinates intersection
2.	<u> </u>	1 WCCK	of curve and its asymptotes asymptotes in polar
			coordinates
		2nd wook	2 Curvature, radius of curvature for Cartesian curves
		2 WCCK	2. Curvature, radius of curvature for Cartesian curves,
			Padius of curvature for pedal curvas. Tangantial
			Radius of curvature for pedar curves. Tangentiar
		ard wool	2 Contro of oursecture. Circle of oursecture. Chord of
		5 week	s. Centre of curvature. Cifcle of curvature. Chord of
		Lost wook	A Tests for concentry and converting Deints of
		Last week	4. Tests for concavity and convexity. Forms of inflavion Multiple points. Cusps nodes & conjugate
			ninexion. Multiple points. Cusps, nodes & conjugate
2	Ord	1 st wook	1 Tracing of curves in Cartesian parametric and
5.	5	1 WCCK	noter as ordinates
		2nd wool	2 Reduction formulae
		2 week	2. Reduction formulae.
		J week	A Intrinsic equations of curve
		Last week	4. Intrinsic equations of curve.
4	⊿th	1 st week	1. Quadrature (area) Sectorial area
		2 nd week	2. Area bounded by closed curves.
		3 rd week	3. Volumes and surfaces of solids of revolution.
		Last week	4. Theorems of Pappu's and Guilden.
			11

CLASS:<u>B.Sc.(Hons) Mathematics-II Year IVSem</u> NAME OF PAPER-<u>Solid Geomerty</u> PAPER CODE - B<u>ML-401</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1^{st}	1st week	1.General equation of second degree. Tracing of
			conics. Tangent at any point to the conic,
		2 nd week	2.chord of contact, pole of line to the conic, director
			circle of conic.
		3 rd week	3.System of conics.
			Confocal conics.
		Last week	4.Polar equation of a conic, tangent and normal to the
			conic.
2.	2 nd	1 st week	Sphere: Plane section of a sphere. Sphere through a
			given circle. Intersection of twospheres, radical plane
			of two spheres.
		2 nd week	2. Co-axal system of spheres
		3 rd week	3.Cones. Right circular cone, enveloping cone and
			reciprocal cone.
		Last week	4.Cylinder: Right circular cylinder and enveloping
			cylinder
3.	3 rd	1 st week	1.CentralConicoids: Equation of tangent plane.
		2 nd week	2.Director sphere. Normal to the conicoids.
			Polar plane of a point.
		3 rd week	3.Enveloping cone of a coincoid.
		Last week	4. Enveloping cylinder of a coincoid.
4.	4 th	1 st week	1.Paraboloids: Circular section,
		2 nd week	2.Plane sections of conicoids.
		3 rd week	3.Generating lines. Confocal conicoid.
		Last week	4. Reduction of second degree equations.

CLASS:<u>B.Sc.(Hons) Mathematics-II Year IVSem</u> NAME OF PAPER –<u>Transform Techniques</u> PAPER CODE - B<u>ML-402</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1.Laplace Transform: – Existence theorem for
			Laplace transforms, Linearity of the Laplace
			transforms, Shifting theorems, Laplace transforms of
			derivatives and integrals,
		2 nd week	2.Differentiation and integration of Laplace
			transforms, Convolution theorem,
		3 rd week	3. InverseLaplace transforms, convolution theorem,
			Inverse Laplace transforms of derivatives and
			integrals,
		Last week	4. solution of ordinary differential equations using
	-		Laplace transform.
2.	2^{nd}	1 st week	1.Finite Laplace transformation: Definition and
			Properties, shifting and scaling theorem.
		2 nd week	2. Fourier transforms: Linearity property, Shifting,
			Modulation, Convolution Theorem,
		3 rd week	3. Fourier Transform of Derivatives, Relations
			between Fourier transform and Laplace
			transform,
		Last week	4.Parseval's identity for Fourier transforms, solution
			of differential Equationsusing Fourier Transforms.
3.	3 rd	1 st week	1.Mellin Transform: Definition and Properties of
			Mellin transform, shifting and scalingproperties,
		2 nd week	2.Mellin transform of derivaties and integral.
		3 ^{ra} week	3 Z-Tranform: Z-Tranform and inverse Z-Tranform
			of elementary function, shiftingtheorem,
		Last week	4. Convolution theorem, initial and final value
		-4	theorem.
4.	4 th	1 st week	1.Hankel Tranform: Basic properties of Hankel
		and -	transform, Basic Operational properties,
		2 nd week	2.Hankel transform of derivatives and some
			elementary functions,
		3 ^{ru} week	3. Relation between Fourierand Hankel transform
		&	with application to boundary value problem and
		Last week	PDE.

CLASS:<u>B.Sc.(Hons) Mathematics-II Year IVSem</u> NAME OF PAPER – <u>Elementary Partial Differential Equations</u> PAPER CODE - B<u>ML-403</u>

SR.	MONTHS	PERIOD	TOPICS
NU.	1 st	1 at most	1 Dential differential equation of Earmontian and an and
1.	L	Ist week	1. Partial differential equations: Formation, order and
			degree, Linear and Non-Linear Partialdifferential
		2 week	equations of the first order. Complete
		ard meals	solution, singular solution, Generalsolution,
		5 week	s. Solution of Lagrange's linear equations, Charpit's
		L oct wook	4 Compatible systems of first order equations
		Last week	4. Comparise systems of first order equations,
2	Ind	1 st week	1 Linear partial differential equations of second and
4.	2	1 WCCK	higher orders
		2 nd week	2 Linear and non-linearhomogeneous and non-
			homogeneous equations with constant coefficients
		3 rd week	3. Partial differential equation with variable
			coefficients reducible to equations with constant
			coefficients, their complimentary functions and
			particular integrals.
		Last week	4.Equations reducible to
			linear equations with constant coefficients.
3.	3 rd	1 st week	1.Classification of linear partial differential
			equations of second order, hyperbolic, parabolic
			and elliptic types,
		2 nd week	2. Reduction of second order linear partial
			differential equations to Canonical (Normal) forms
			and their solutions,
		3 rd week	3.Solution of linear hyperbolic equations,
		Last week	4.Monge's method for partial differential equations
	-		of second order.
4.	4 th	1 st week	1.Cauchy's problem for second order partial
			differential equations,
		2 nd week	2.Characteristic equations and characteristic curves of
		and a	second order partial differential equation,
		3 ^{ru} week	3.Method of separation of variables: Solution of
		.	Laplace's equation,
		Last week	4. Wave equation (one and two dimensions),
			Diffusion (Heat) equation (one and two dimension)
			in Cartesian Co-ordinate system.

CLASS:<u>B.Sc.(Hons) Mathematics-II Year IVSem</u> NAME OF PAPER – <u>Statics</u> PAPER CODE - B<u>ML-404</u>

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week & 2 nd week	Composition and resolution of forces.
		3 rd week & Last week	Parallel forces. Moments and Couples.
2.	2 nd	1st week & 2 nd week	Analytical conditions of equilibrium of coplanar forces.
		3 rd week & Last week	Friction. Centre of Gravity.
3.	3 rd	1st week & 2 nd week	Virtual work. Forces in three dimensions.
		3 rd week & Last week	Poinsots central axis.
4.	4 th	1st week & 2 nd week	Wrenches. Null lines and planes.
		3 rd week & Last week	Stable and unstable equilibrium.

CLASS:<u>B.Sc.(Hons) Mathematics-II Year IVSem</u> NAME OF PAPER –<u>Operations Research-I</u> PAPER CODE - B<u>ML-405</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1.Definition, scope, methodology and applications of
			OR. Types of OR models.
			2.Concept of optimization, Linear Programming:
		2 nd week	Introduction, Formulation of a Linear
			Programming Problem (LPP),
		3 rd week	3.Requirements for an LPP, Advantages and
			limitations of LP.
		Last week	4.Graphical solution: Multiple, unbounded and
			infeasible solutions.
2.	2^{nd}	1 st week	1.Principle of simplex method: standard form, basic
			solution, basic feasible solution.
		2 nd week	2.Computational Aspect of Simplex Method: Cases
			of unique feasible solution, no feasiblesolution,
		3 ^{ra} week	3.multiple solution and unbounded solution and
			degeneracy.
		Last week	4.Two Phase and Big- Mmethods.
	e ud	ast 1	
3.	3 ^{ru}	1 st week	1.Duality in LPP, primal-dual relationship.
		2 nd week	2. Transportation Problem: Methods for finding
		ard meals	basic reasible solution of a transportation problem,
		5 week	ontimum colution
		Last wook	4 Unhalanged and degenerate transportation
		Last week	4. Underanced and degenerate transportation
			transportation problem
1	∕th	1 st wook	1 Assignment Problem: Solution by Hungarian
4.	4	I WUUK	method
		2 nd week	2 Unbalanced assignment problem maximization in
		2 WCCK	an assignment problem. Crew assignment and
			Travelling salesmanproblem
		3 rd week	3.Game Theory: Two person zero sum game. Game
			with saddle points.
		Last week	4.the rule of dominance; Algebraic. graphical and
			linear programming methods for solving mixed
			strategy games.

CLASS:<u>B.Sc.(Hons) Mathematics-II Year IVSem</u> NAME OF PAPER – <u>Special Functions-II</u> PAPER CODE - <u>BML-406</u>

SR. NO	MONTHS	PERIOD	TOPICS
1	1 st	1st week	Laguerre Polynomials: Laguerre's equation and its
1.	I		solution.
		2 nd week	2.generating function,
		3 rd week	3. alternative expression for the Laguerre
			polynomials,
		Last week	4.explicit expressions and special values
			of the Laguerre polynomials,
	and	ast 1	
2.	2 nd	1 st week	1. orthogonality properties of Laguerre polynomials,
		Z ^{ad} week	2.relation between Laguerre polynomials and their
		3rd wook	3 recurrence relations associated aguerre
		J WEEK	nolynomials
		Last week	4 properties of the associated Laguerre polynomials
3.	3 rd	1 st week	1.Hypergeometric functions: The hypergeometric
			series,
		2 nd week	2.an integral formula for thehypergeometric series,
			the hypergeometric equation,
		3 rd week	3.linear relation between the solutions
			of the hypergeometric equation,
		Last week	4.relation of contiguity,
4	4 th	1 st week	1 the confluent hypergeometric function.
	-	&	
		2 nd week	
		3 rd week	2generalized hypergeometric series
		&	
		Last week	

CLASS: <u>B.Sc.(Hons) Mathematics-III Year VI Sem</u> NAME OF PAPER – Real and Complex Analysis PAPER CODE - <u>BML-601</u>

SR. NO	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1.Jacobians.
	_	2 nd week	2.Beta and Gama functions.
		3 rd week	3. Double and Triple integrals. Dirichlets
			integrals.
		Last week	4. Change of order of integration in double
			integrals.
2.	2 nd	1 st week	1.Fourier's series: Fourier expansion of
			piecewise monotonic functions,
		2 nd week	2. Properties of Fourier Co-efficients,
			Dirichlet's conditions, Parseval's identity for
			Fourier series,
		3 rd week	3.Fourier series for even and odd functions,
		Last week	4.Half range series, Change of Intervals.
3.	3 rd	1 st week	1.Extended Complex Plane, Stereographic
			projection of complex numbers,
		2 nd week	2.continuity and differentiability of complex
			functions,
		3 rd week	3.Analytic functions, Cauchy-Riemann
		-	equations.
	44b	Last week	4.Harmonic functions.
4.	4 th	1 st week	1. Mappings by elementary functions:
		and	Translation, rotation,
		2 nd week	2. Magnification and Inversion.
		J ^{ru} week	3.Contormal Mappings, Mobius
		T a st	transformations.
		Last week	4. Fixed pints, Cross ratio, Inverse Points and
			critical mappings.

CLASS: <u>B.Sc.(Hons) Mathematics-III Year VI Sem</u> NAME OF PAPER – <u>Linear Algebra</u> PAPER CODE - <u>BML-602</u>

SR.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1 Vector spaces subspaces Sum and Direct
	-		sum of subspaces. Linear span.
		2 nd week	2. Linearly Independent and dependent
			subsets of a vector space. Finitely generated
			vector space,
		3 rd week	3.Existence theorem for basis of a finitely
			generated vector space,
		Last week	4. Finite dimensional vector spaces,
			Invariance of the number of elements of bases
			sets, Dimensions, Quotient space
			and its dimension.
2.	2 nd	1 st week	1.Homomorphism and isomorphism of vector
		_	spaces,
		2 nd week	2.Linear transformations and linear
			forms on vector spaces,
		3 rd week	3. Vector space of all the linear
			transformations Dual Spaces, Bidual spaces,
			annihilator of subspaces of finite dimensional
			vector spaces,
		Last week	4.Null Space, Range space of a linear
	ard	d st 1	transformation, Rank and Nullity Theorem,
3.	3 ^{ru}	1 st week	1. Algebra of Linear Transformation, Minimal
		and	Polynomial of a linear transformation,
		^{2nd} week	2.Singular and non-singular linear
		ard wool	transformations,
		J week	5. Matrix of a linear Transformation,
		I act wook	A Figen values and Figen vectors of linear
		Last week	transformations
4	⊿ th	1 st week	1 Inner product spaces Cauchy-Schwarz
-10	-	1 week	inequality
		2 nd week	2. Orthogonal vectors. Orthogonal
			complements. Orthogonal sets and Basis.
		3 rd week	3.Bessel's inequality for finite dimensional
			vector spaces, Gram-Schmidt,
			Orthogonalization process,
		Last week	4. Adjoint of a linear transformation and
			its properties, Unitary linear transformations.

CLASS: <u>B.Sc.(Hons)</u> <u>Mathematics-III Year VI Sem</u> NAME OF PAPER – <u>Numerical Analysis</u> PAPER CODE - <u>BML-603</u>

SR.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1Finite Differences operators and their
	-		relations. Finding the missing terms and
			effect of error in a difference tabular values.
		2 nd week	2. Interpolation with equal intervals: Newton's
			forward and Newton's backward
			interpolation formulae.
		3 rd week	3. Interpolation with unequal intervals:
			Newton's divided difference,
		Last week	4. Lagrange's Interpolation formulae.
2.	2 nd	1 st week	1.Central Differences: Gauss forward and
			Gauss's backward interpolation formulae,
		2 nd week	2.Sterling, Bessel Formula.
		3 rd week	3. Eigen Value Problems: Power method,
			Jacobi's method, Given's method,
		Last week	4.House-Holder's method, QR method,
			Lanczos method.
3.	3 rd	1 st week	1.Numerical Differentiation: Derivative of a
		&	function using interpolation formulae as
		2 nd week	studied in Sections–I & II.
		3 rd week	2.Numerical Integration: Newton-Cote's
		&	Quadrature formula, Trapezoidal
		Last week	rule, Simpson's one- third and three-eighth
	44h	d at t	rule, Gauss Quadrature formula.
4.	4 ^m	1 st week	1.Difference equation: Formation of
			difference equation, Linear difference
		and	equation,
		2 nd week	2. Difference equation reducible to linear
			differential equations: Single stan methods
			Disord's method
		3rd wool	3 Taylor's series method Fuler's method
		J WEEK	Runge-Kutta Methods Multiple step
			methods.
		Last week	4 Predictor-corrector method Modified
			Euler's method, Milne-Simpson's method.

CLASS: <u>B.Sc.(Hons) Mathematics-III Year VI Sem</u> NAME OF PAPER – <u>Numerical Analysis-Lab</u> Practical PAPER CODE - <u>BMP-604</u>

S	MONTHS	PERIOD	TOPICS
R.			
N			
0.			
1.	1 st		Programming in C
		lst week	1 To integrate numerically using Trapezoidal
		and	rule.
		2 nd week	2. To integrate numerically using Simpson's one-
		ard success	unira rule.
		J week	3. To integrate numerically using Simpson's
		A Lost wool	three-eignth rule.
2	and	1 st wook	4 To find numerical solution of ordinary
Z.	2		differential equations by Euler's method/
		2 nd wook	Modified Fuler's method
		2 WCCK	Woulled Ealer's method,
		3 rd week	5. Taylor's series Method
		&	6. To find numerical solution of ordinary
		Last week	differential equations by Runge -Kutta
			method.
3.	3 rd	1 st week	7 To interpolate the data using Newton's forward
		&	interpolation formula
		2 nd week	
		ard	
		3 rd week	8 To interpolate the data using Newton's
		X Lesteres	backward interpolation formula
		Last week	
1	∕∎th	1st wook	9. To internalate the data using Gauss's forward
4.	4		interpolation formula
		2 nd week	
		3 rd week	10. To interpolate the data using Gauss's
			backward interpolation formula
		Last week	11. To interpolate the data using Lagrange's
			interpolation formula
			r · · · · · · · · · · · · · · · · · · ·

CLASS: <u>B.Sc.(Hons) Mathematics-III Year VI Sem</u> NAME OF PAPER – <u>Dynamics</u> PAPER CODE - <u>BML-605</u>

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1. Velocity and acceleration along radial,
		&	transverse, tangential and normal directions.
		2 nd week	
		3 rd week	2.Relative velocity and acceleration.
		&	Simple harmonic motion. Elastic strings.
		Last week	
2.	2 nd	1 st week	1.Mass, Momentum and Force.
		2 nd week	2.Newton's laws of motion.
		3 rd week	3.Work, Power and Energy.
		Last week	4.Definitions of Conservative forces and
			Impulsive forces.
3.	3 rd	1 st week	1. Motion on smooth and rough plane curves.
		&	
		2 nd week	
		3 rd week	2.Projectile motion of a particle in a plane.
		&	Vector angular velocity.
		Last week	
4.	4 th	1 st week	1.General motion of a rigid body. Central
			Orbits,
		2 nd week	2.Kepler laws of motion.
		3 rd week	3. Motion of a particle in three dimensions.
		Last week	4.Acceleration in terms of different co-
			ordinate systems.

CLASS: <u>B.Sc.(Hons)</u> Mathematics-III Year VI Sem NAME OF PAPER – <u>Mathematical Modeling</u> PAPER CODE - <u>BML-606</u>

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	The process of Applied Mathematics:
		&	Mathematical modeling, need, techniques,
		2 nd week	classification and illustrative.
		3 rd week	
		&	
		Last week	
2.	2 nd	1 st week	1.Mathematical modeling through ordinary
			differential equation of first order.
			2.Mathematical
		2 nd week	modeling in population dynamics,
		3 rd week	3.mathematical modeling of epidemic and
		&	compartment
		Last week	models through system of ordinary
			differential equations.
3.	3 rd	1 st week	1.Mathematical modeling in economics, in
		&	medicine, Arms race, Battle, international
		2 nd week	trade and
		3 rd week	2.dynamics through ordinary differential
			equations.
		Last week	3.Mathematical modeling through
			ordinary differential equation of record order.
4.	4 th	1 st week	1.Mathematical modeling through difference
		&	equations: need, basic theory,
		2 nd week	2.economics and finance,
		3 rd week	3.population dynamics and Genetics,
		Last week	4.probability theory and examples.

Even Semesters

CLASS:M<u>.Sc. Mathematics-I Year IISem</u> NAME OF PAPER –ABSTRACT ALGEBRA PAPER CODE -<u>MAL-521</u>

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1.Canonical Forms-Similarity of linear
			transformations.
		2 nd week	2. Invariant subspaces. Reduction to
		and a	triangular forms.
		3 ^{ru} week	3. Nilpotent transformations. Index of nilpotency.
		Last week	4.Invariants of a nilpotenttransformation.
2.	2 nd	1 st week	1. The primary decomposition theorem.
		2 nd week	2. Jordan blocks and Jordan forms.
		3 rd week	3 Rational canonical form.
		Last week	4.Generalized Jordan form over any field.
3	3 rd	1 st week	1 Cyclic modules Free modules
5.	5	2 nd week	2. Simple modules. Semi-simple modules.
		3 rd week	3.Schur's Lemma.Noetherian and Artinian modules
			and rings
		Last week	4. Hilbert basis theorem.
4.	4 th	1 st week	1.Wedderburn-Artin theorem. Uniform modules,
		_	primary modules,
		2 nd week	2.Noether-Laskertheorem. Smith normal form over a
			principal ideal domain and rank.
			3.Fundamental structure
		3 ^{ra} week	theorem for finitely generated abelian groups
		Last week	4. Its application to finitely generated Abelian
			groups.

CLASS:M<u>.Sc. Mathematics-I Year IISem</u> NAME OF PAPER-<u>MEASURE AND INTEGRATION THEORY</u> PAPER CODE -<u>MAL-522</u>

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week	1.Measurable functions and their equivalent
			functions
		2 nd week	2 Approximation of measurable functions by
			sequences of simple functions.
		3 rd week	3.Measurable functions as nearly continuous
			functions, Egoroffs theorem, Lusin's theorem,
		Last week	4.Convergence in measure and F. Riesz theorem for
			convergence in measure, Almost
			uniformconvergence.
	and	1st meals	1 Shortsomings of Dismonry Integral Laboration
2.	2114	1 week	Integral of a bounded function over a set of
			finite measure and its properties
		2 nd week	2.Lebesgue integral as a generalization of Riemann
			integral,Bounded convergence theorem,
		3 rd week	3.Lebesgue theorem regarding points of
			discontinuities of Riemann integrable functions,
			Integral of non-negative functions,
		Last week	4.Fatou's Lemma, Monotone convergence theorem,
			General Lebesgue Integral, Lebesgue convergence
2	ard	1 st wook	1 Vitali's acyoning Lamma Differentiation of
з.	3	1 WEEK	monotonic functions
		2 nd week	2. Functions of boundedvariation and its
			representation as difference of monotonic functions.
		3 rd week	3.Differentiation of Indefiniteintegral. Fundamental
			Theorem of Calculus.
		Last week	4.Absolutely continuous functions and
		a st	theirproperties.
4.	4 th	1 st week	1.Lpspaces, Convex functions, Jensen's inequalities,
		2 rd week	2. Ine Holder and Minkowskiinequalities,
		5 week	S. Convergence and Completeness of Lpspace, Riesz- Fisher Theorem
		Last week	4 Boundedlinear functional on Lospace Riesz
		Lust week	representation theorem.

CLASS:M<u>.Sc. Mathematics-I Year IISem</u> NAME OF PAPER –<u>METHODS OF APPLIED MATHEMATICS</u> PAPER CODE -<u>MAL-523</u>

SR.	MONTHS	PERIOD	TOPICS
10.	4 ct	1.4	
1.	1 st	Ist week	1.Fourier Transforms - Definition and properties,
		2 nd week	2. Fourier transform of some elementary
		ard TT	functions, convolution theorem,
		3 rd weeK	3.Application of Fourier transforms to solve ordinary
			& partial differential equations.
		Last week	4.Curvilinear Co-ordinates : Co-ordinate
	-		transformation, Orthogonal Co-ordinates
2.	2^{nd}	1 st week	1.Changeof Co-ordinates, Cartesian, Cylindrical and
			spherical co-ordinates,
		2 nd week	2 Expressions for velocity and accelerations, ds, dv
			and ds2 in orthogonal co-ordinates,
		3 rd week	3.Areas, Volumes & surface areas in Cartesian,
			Cylindrical & spherical co-ordinates in a few simple
			cases, Grad, div,
		Last week	4.Curl, Laplacian in orthogonal Co-ordinates,
			Contravariant and Co-variant components of a
			vector, Metric coefficients & the volume element.
3.	3 rd	1 st week	1.Sample spaces, random variables,
		2 nd week	2.Mathematical expectation and moments,
		3 rd week	3.Binomial,Poisson, Geometric,
		Last week	4.Uniform and Exponential distributions.
4.	4 th	1 st week	1Normal & Gamma distributions.
		2 nd week	2.Multiple Regression, Partial
		3 rd week	3.Multiple Correlation, t,F and Chi-square
			distributions,
		Last week	4 Weak law of large numbers and Central Limit
			Theorem

CLASS:M<u>.Sc. Mathematics-I Year IISem</u> NAME OF PAPER –ORDINARY DIFFERENTIAL EQUATIONS-II PAPER CODE -<u>MAL-524</u>

SR.	MONTHS	PERIOD	TOPICS
NU.			
1.	1^{st}	1st week	1.Linear systems, fundamental set and fundamental
			matrix of a homogeneous system,
		2 nd week	2.Wronskianof a system. Abel - Liouville formula,
			Adjoint systems,
		3 rd week	3.Reduction of the order of a homogeneoussystem.
		Last week	4.Systems with constant coefficients, Method of
			variation of constants for a non-homogeneous
			system, Periodic solutions, Floquet theory for
			periodic systems
2.	2 nd	1 st week	1 .Linear differential equations of ordern, Lagrange's
			identity, Green's formula
		2 nd week	2.Nonlinear differential equations, Plane autonomous
			systems and their critical points
		3 rd week	3. Classification of critical points-rotation points,
			foci, nodes, saddle points. Stability, asymptotical
			stability and unstability of critical points,
		Last week	4. Almost linear systems, Perturbations, Simple
			critical points
3.	3rd	1 st week	1.Dependence on a parameter, Liapunov function,
	•	2 nd week	2.Liapunov's method to determine stability for
			nonlinearsystems, Limit cycles,
		3 rd week	3.Bendixson non-existence theorem, Statement of
			Poincare-Bendixson theorem, Index of a critical point
			4. Motivating problems of calculus of variations
		Last week	
4.	4 th	1 st week	1.Shortest distance, Minimum surface of
	-		revolution, Brachistochrone problem,
		2 nd week	2.Isoperimetric problem, Geodesic, Fundamental
			lemma of calculus of variations,
		3 rd week	3.Euler's equation for one dependent function and its
			generalization to 'n'dependent functions and to higher
			order derivatives,
		Last week	4. Conditional extremum under geometric constraints
			and under integral constraints.

CLASS:M<u>.Sc. Mathematics-I Year IISem</u> NAME OF PAPER –COMPLEX ANALYSIS-II PAPER CODE -<u>MAL-525</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1Analytic Continuation; Spaces of Analytic
			functions, Hurwitz's theorem,
		2 nd week	2.Montel'stheorem, Uniqueness of direct analytic
			continuation,
		3 rd week	3. Uniqueness of analytic continuation along a
			curve, power series method of analytic continuation.
		Last week	4.Monodromy theorem and its consequences
2	2 nd	1 st week	1. Entire function: Canonical products. Weierstrass'
2.	-		factorisation theorem.
		2 nd week	2.Exponent of Convergence, Order of an entire
			function, Jensen's formula,
		3 rd week	3.Borel's theorem. Hadamard's
			factorization theorem,
		Last week	4.Hadamard's three circles theorem.
3.	3 rd	1 st week	1. The range of an analytic function. Bloch's theorem.
		2 nd week	2. The Little Picard theorem. Schottky's theorem.
		3 rd week	3.MontelCaratheodory and the Great picard theorem.
			Conformal mapping;
		Last week	4.Riemann mapping theorem, Harmonic function on
			a disk, Dirichletproblem.
4.	4 th	1 st week	1. Green's function. Harnack's inequality and
		and a	theorem,
		2 nd week	2.Univalent functions. Bieberbach's
			conjecture (Statement only) and the $1/4$ theorem.
		ard	Meromorphic Function;
		3 ^{ru} week	3.Gamma function and its properties, Riemann Zeta
		Last week	tunction, Riemann'sfunctional equation.
			4.Kunge's theorem, Poisson-Jensen formula.
CLASS:M.Sc. Mathematics-I Year IISem NAME OF PAPER-Advanced Numerical Methods PAPER CODE -MAL-526

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1.Interpolation: Introduction of Gauss' Central Difference Formulae, Stirling's Formula, Bessel's Formula without
		2 nd week	proof, 2.Everett's Formula, Relation between Bessel's and Everett's Formulae. Hermite'sInterpolation Formula, Divided Differences and Their Properties
		3 rd week	3.Newton's General Interpolation Formula, Interpolation by Iteration Inverse Interpolation Double Interpolation
		Last week	4.Approximation: Norms of functions – Best Approximations: Least squares polynomial approximation–Approximation with Chebyshev polynomials – Piecewise Linear & Cubic Spline approximation.
2.	2^{nd}	1 st week	1.Numerical Differentiation: Errors in Numerical Differentiation, Cubic Splines Method, Differentiation Formulae with Function Values, Maximum and Minimum Values of a Tabulated Function
		2 nd week	2.Numerical Integration: Boole's and Weddle's rules, use of Cubic splines, Romberg integration, Newton-Cotes integration formula, Euler-Maclaurin formula, Adaptive
		3 rd week	3.Numerical evaluation of Singular integrals, Numerical evaluation of double and triple integrals with constant and variable limits and its application,
		Last week	4.Solution of integral equations. Iterative Method for System of Linear Equations
3.	3 rd	1 st week	1.General iterative method. Jacobi and Gauss-Seidel method. Relaxation method.
		2 nd week	2.Necessary and sufficient conditions for convergence. Speed of convergence.S.O.R. and S.U.R. methods.
		3 rd week	3.Determination of eigenvalue by iterative methods. Ill conditioned system.Solution of tridiagonal system,
		Last week	4.Iterative Method for System of Non-linear Equations: Complex root of non-linear equation, solution
4	Ath	1 st wook	1 Initial value problems: PungeKutte methods of fourth
4.	4	1 WEEK	order, Multistep method- The Adams-Moulton
		2 nd week	2. Convergence and Truncation error for the above methods. Milne's method, Cubicspline method,
		3 rd week	3.Simultaneous and higher order equations, Boundary Value Problems: Second order finite difference,
		Last week	4.Shooting method and Cubic spline methods, Numerov's method, Mixed BVPs.

CLASS:M<u>.Sc. Mathematics-I Year IISem</u> NAME OF PAPER– Computing Lab-MATLAB PAPER CODE - 527

SR.	MONTHS	PERIOD	TOPICS
10.	-1 ct	1.4	
1.	1 st	1st week	I.MAILAB Basics : working in the command
			Window, Arithmetic Operations, Elementary
		and	Math Built-in Functions, Variable names, script files,
		2 nd week	2. Matrices and Arrays, Input to a Script file
		and	Output commands-The disp Command,
		3 rd week	3. The fprintf Command, the save and load
			commands, Importing and Exporting data.
		Last week	4. Two-dimensional plots, formatting a plot. Multiple
	-		plots on the same page.
2.	2 nd	1 st week	1. Operations with Arrays: Creating, Concatenating,
			and Expanding Matrices,
		2 nd week	2.Removing Rows or Columns from a Matrix,
			Reshaping and Rearranging Arrays,
		3 rd week	3.Multidimensional Arrays, Array
			Indexing, Mathematical Operations with Arrays,
		Last week	4.Systems of Linear Equations and solutions.
3.	3 rd	1 st week	1. Programming in MATLAB: Relational and
			logical operators,
		2 nd week	2. 2.Conditional statements : if-end, if-else-end, if-
			elseif-else-end Structures.
		3 rd week	3. The switch-caseStatement . LOOPS: for-end,
			while-end loops, Nested loops and nested conditional
			statements,
		Last week	4.the break and continue commands. Creating a
			function file, local and global
			variables.
4.	4 th	1 st week	1.Symbolic math: Symbolic objects and symbolic
	-		expressions,
		2 nd week	2. Creating symbolic objects, creating symbolic
			expressions,
		3 rd week	3.the find sym command and the default symbolic
			variable,
		Last week	4.Changing the form of an existing symbolic
			expression.

CLASS:M.Sc. Mathematics-II Year IVSem NAME OF PAPER-<u>FUNCTIONAL ANALYSIS</u> PAPER CODE -641

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1.Normed linear spaces, metric on normed linear
			spaces, Holder's and Minkowski'sinequality,
		2 nd week	2.completeness of quotient spaces of normed linear
			spaces. Completeness of l_P , L_P , R^n , C^n and C[a, b].
		3 rd week	3.Bounded linear transformation. Equivalent
			formulation of continuity.
		Last week	4.Spaces of bounded linear transformation.
			Continuous linear functional, conjugate spaces.
2.	2 nd	1 st week	1.Hahn Banach extension theorem (Real and
			Complex form), Riesz Representation
			theorem for bounded linear functionals on LP and
			C[a, b].
		2 nd week	2.Second Conjugate spaces, Reflexive
			spaces,
		3 rd week	3.Uniform boundedness principle and its
			consequence,
		Last week	4.Open mapping theorem and its application,
			projections, closed graph theorem.
3.	3 rd	1 st week	1.Equivalent norms, weak and strong convergence,
	-		their equivalence in finite dimensionalspaces.
		2 nd week	2. Compact operators and its relation with continuous
			operators,
		3 rd week	3.Compactness of lineartransformation on a finite
			dimensional space.
		Last week	4. Properties of compact operators, compactness of
			the limit of the sequence of compact operators.
4	⊿ th	1 st week	1Inner product spaces. Hilbert spaces. Schwarz's
-10	-		inequality,
		2 nd week	2.Hilbert space as normed linear space, convex sets in
		_ ,,	Hilbert spaces.
		3 rd week	3. Projection theorem, orthonormal sets, Bessel's
			inequality,
		Last week	4. Parseval's identity, Conjugate of a Hilbert space
		Last week	

CLASS:M.Sc. Mathematics-II Year IVSem NAME OF PAPER-<u>DIFFERENTIAL GEOMETRY</u> PAPER CODE -642

SR. NO	MONTHS	PERIOD	TOPICS
1.	1 st	1st week 2 nd week 3 rd week Last week	1.Curves with torsion: Tangent,2.Principal Normal, Curvature,3.Binormal, Torsion,4.Serret Frenet formulae
2.	2 nd	1 st week 2 nd week 3 rd week Last week	 1.Locus of centre of Curvature, 2.Locus of centre of Spherical 3.Curvature, Surfaces, Tangent plane, 4.Normal, Envelope, Characteristics, Edge of regression
3.	3 rd	1 st week 2 nd week 3 rd week Last week	 1.Curvilinear Co-ordinates, 2.First order magnitudes, Directions on a surface, 3.The Normal, Second order magnitudes, 4.Derivative of unit normal
4.	4 th	1 st week 2 nd week 3 rd week Last week	 Principal directions and curvatures, First and Second curvatures, Geodesic property, Equations of geodesics, Surface of revolution, Torsion of a geodesic.

CLASS:M<u>.Sc. Mathematics-II Year IVSem</u> NAME OF PAPER-<u>MECHANICS OF SOLIDS-II</u> PAPER CODE -<u>643</u>

SR.	MONTHS	PERIOD	TOPICS
щ.			
1.	1 st	1st week	1.Two-dimensional Problems: Plane stress. Generalized
		and	2 General solution of Biharmonic equation Stresses and
		2 week	displacements in terms of complex potentials
		ard meals	3 The structure of functions of $\phi(z)$ and $\psi(z)$ First and
		5 week	second boundary value problems in plane elasticity.
		L ant maals	4. Thick-walled tube under external and internal pressures.
		Last week	
2.	2 nd	1 st week	1. Viscoelasticity: Spring & Dashpot,
	_	2 nd week	2. Maxwell & Kelvin Models,
		3 rd week	3.Three parameter solid,
		Last week	4 Correspondence principle& its application to the
			Deformation of a viscoelastic Thick-walled tube in Plane
			strain.
3.	3rd	1 st week	1. Torsion: Torsion of cylindrical bars. Tortional rigidity.
	U		Torsion and stress functions.
		2 nd week	2. Lines of shearing stress. Simple problems related to
			circle, ellipse and equilateral triangle.
		3 rd week	3. Waves: Propagation of waves in an isotropic elastic
			solid medium. Waves of dilatation and distortion.
		Last week	4. Plane waves. Elastic surface waves such as Rayleigh
			and Love waves.
4.	4 th	1 st week	1Variationalmethods - Theorems of minimum potential
-			energy.
		2 nd week	2. Theorems of minimum complementary energy.
			Reciprocal theorem of Betti and Rayleigh.
		3 rd week	3.Deflection of elastic string and elastic membrane.
			Solution of Euler's equation by Ritz,
		Last week	4. Galerkin and Kantorovich methods.

CLASS:M.Sc. Mathematics-II Year IVSem NAME OF PAPER-<u>INTEGRAL EQUATIONS</u> PAPER CODE -<u>644</u>

SR.	MONTHS	PERIOD	TOPICS
NO.	d st		
1.	150	1st week	1. Definition of Integral Equations and their
			classification. Relation between integral and
			differential equations Fredholm integral equations of
		and	Second kind with separable kernels.
		2 week	2. Eigen values and Eigen functions. Reduction to a
		ard wool	System of algebraic equations.
		5 week	sprovingtions Iterative scheme
		Lost wook	A Condition of convergence and uniqueness of series
		Last week	4. Condition of convergence and uniqueness of series
			theorems
2	Ind	1 st week	1 Solution of Volterra's integral equations by iterative
4.	4	I WEEK	scheme Successive approximation
		2 nd week	2.Resolvent kernel. Integral transform methods: Fourier
		2 WCCK	transform,
		3 rd week	3. Laplace transform, Convolution integral,
		Last week	4. Application to Volterra integral equations with
			Convolution type kernels, Abel's equations
3.	3 rd	1 st week	1.Symmetric kernel. Complex Hilbert space. Orthonormal
	C C		system of functions,
		2 nd week	2.Fundamental properties of eigen values and eigen
			functions for symmetric kernels.
		3 rd week	3. Expansion in eigen function and bilinear form, Hilbert
			4 Solution of integral equations with symmetric kernels
		Last week	4.5010101 01 integral equations with symmetric kerners
4.	4 th	1 st week	1.Singular Integral Equations
		2 nd week	2. Inversion formula for singular integral equation with $\frac{1}{2}$
		ard -	3 Dirac Delta Function Green's function approach to
		3 rd week	reduce boundary value problems of a self-adjoint
			differential equation with homogeneous boundary
		T and some all	conditions to integral equation forms.
		Last week	4. Auxiliary problem satisfied by Green's function.
			Modified Green's function

CLASS:M<u>.Sc. Mathematics-II Year IVSem</u> NAME OF PAPER-: ADVANCED FLUID MECHANICS PAPER CODE -<u>645</u>

SR. NO.	MONTHS	PERIOD	TOPICS
1	1 st	1st week	1. Stress components in a real fluid, stress tensor.
	•	2 nd week	Symmetry of the stress tensor, Stresses in a fluid at rest, 2.Relations between rectangular components of stress in transformed coordinate system, Connection between stresses and velocity gradients
		3 rd week	3.Viscous fluid, Navier-Stokes equations of motion. Laminar Flows, Exact solution of Navier-Stokes
		Last week	equations: Couette flows 4.Generalized Couette flow between two parallel plates, Plane Poiseuille flow, Hagen-Poiseuille flow
2.	2^{nd}	1 st week	1. Flow through tubes of uniform cross section in the form
		2 nd week	 of circle, annulus, ellipse and equilateral triangle under constant pressure gradient. 2.Unsteady flow over a flat plate: Stokes First & second Problem. Dynamical similarity: Dimensional Analysis and Buckingham π-theorem.
		3 rd week Last week	3.Reynolds number, Wever Number, Mach Number,Froude Number, Eckert Number,4.Application of pitheorem to viscous and compressible
	ard	1.st 1	fluid flow
3.	3 ^{ru}	1 жеек	approximation
		2 nd week	2.Boundary layer thickness, displacement thickness, momentum thickness, boundary layer equations in two- dimensions
		3 rd week	3.Flat Plate Boundary Layer-Blasius solution, Karman integral equations.
		Last week	boundary layer.
4.	4 th	1 st week	1.Compressible flow: Stagnation properties. Wave motion
		2 nd week	in a gas: Speed of Sound,2. Equation of motion of a gas, Variation of fluid velocity with flow area, Subsonic, Sonic and Supersonic flows of a
		3 rd week Last week	 gas. 3.Isentropic gas flows: Property relations for isentropic flow of ideal gases, Flow through a nozzle; 4. Converging Nozzles, Converging–Diverging Nozzles.

CLASS:M<u>.Sc. Mathematics-II Year IVSem</u> NAME OF PAPER-<u>COMPUTING LAB-III</u> PAPER CODE -<u>648</u>

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1 st	1st week 2 nd week 3 rd week Last week	 Overview Special Characters Text, Making Tables Bibliography with Bibtex,
2.	2 nd	1 st week 2 nd week 3 rd week Last week	 Math Mode, Equations and arrays Specific operators of Mathematics structure formations – Derivatives, Integrals del operator, product and sum operator
3.	3 rd	1 st week 2 nd week 3 rd week Last week	 Making special parts Format for technical writing – Article , Report Cover page
4.	4 th	1 st week 2 nd week 3 rd week Last week	 Abstract, other front matter, Back matter, graphics, Importing pictures.

CLASS:M.Sc. Mathematics-I Year I Sem NAME OF PAPER –<u>PROGRAMMING WITH FORTRAN (PRACTICAL)</u> PAPER CODE -<u>MAL-517</u>

*Practical will be based on the paper MAL-516/Programming with FORTRAN Theory

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1.Computer Programming in Fortran 90/95 : Numerical constants and variables, arithmetic expressions; implicit declaration, named constants, input/output:
		2 nd week	2. List directed input/output statements.
		3 rd week	3.Format specifications. Declarations including KIND specifications,
		Last week	4.Use of complex variables, Pointers
2.	2 nd	1 st week	1 Logical expressions and control flow; conditional flow; IF structure, Block DO loop Counted controlled Loops.
		2 nd week	2.arrays; input/output of arrays, arrays with variable size using ALLOCATABLE statement,
		3 rd week	3.arrays handling functions,
		Last week	4. multidimensional arrays
3.	3 rd	1 st week	1.Strings, declaration of character variables,
	-	2 nd week	2. character handling functions, operators on strings,
		3 rd week	3.Subprograms, Types of Subprograms, Significance
			Functions; subroutines;
		Last week	4. Procedures with array arguments, Recursion
4.	4 th	1 st week	1.Derived types, Elements of derived type, arrays and derived type
		2 nd week	2.Processing files, Sequential file,
		3 rd week	3. Direct Access file; creating and closing a file and
		&Last week	4. Accessing elements using pointers with example

CLASS:M.Sc. Mathematics-II Year IIISem NAME OF PAPER –Computing Lab-II (MATLAB Programming & Applications) PAPER CODE -<u>MAL-634</u>

SR.	MONTHS	PERIOD	TOPICS
NO.			
1.	1 st	1st week	1.User-Defined Functions and Function Files: Main
			Features of a Function file, Saving aFunction File,
		2 nd week	Using a User-Defined Function,
			2.Comparison between Script Files and Function
		3 rd week	Files, Anonymous and Inline Functions: Anonymous
			Functions, Inline Functions.
			3.Functions:Using Function Handles for Passing a
			Function into a Function, Using a Function Name for
			Passing a Function into a Function.
		Last week	4.Subfunctions, Nested Functions
2.	2 nd	1 st week	1.Polynomials: Value of a Polynomial, Roots of a
			Polynomial, Addition, Multiplication and
			Division of Polynomials,
		2 nd week	2.Derivatives of Polynomials. Curve Fitting with
		_	Polynomials, The polyfit Function, Curve Fitting
		3 rd week	with Functions other than Polynomials.
		Last week	3.Applications in Numerical Analysis: Solution of an
			Equation with one Variable, Minimum or a
			Maximum of a Function,
			4.Numerical Integration, Ordinary Differential
	-		Equations.
3.	3 rd	1 st week	1.Three Dimensional Plots: Line Plots, Mesh and
		and a	Surface Plots, Plots with Special Graphics,
		2 nd week	2.The View Command.Symbolic Math: Solving
		ard	Algebraic Equations,
		3 rd week	3.Differentiation, Integration, Solving an
			OrdinaryDifferential Equation, Plotting Symbolic
		L ant maale	Expressions, 4 Numerical Calculations with Sumbalia
		Last week	4. Numerical Calculations with Symbolic
4	∕th	1st wool	1 Numerical Methods Interpolation : Lagrange's
4.	4	1 WEEK	interpolation formula
		2nd wook	2 Newton Gregoryforward interpolation formula
		2 WCCK	Newton Gregory backward interpolation formula
		3 rd week	3 Solution of asystem of Linear Equations: (Unique
		J WUUK	solution case only) Gauss – Elimination Method
			Gauss – Iordan Method
		Last week	4. Solution of Ordinary Differential Equations
		Lust week	Euler's Method. Euler's Modified Method
			RungeKutta Second and Fourth order Method.

The question paper will consist of Two sections Theory and Practical. Question No. 1 based on theory will contain Four short answer type questions without any internal choice covering the entire syllabus and shall be compulsory. Each of the two sections will contain two questions and the students are required to solve two questions practically taking one question from each section. All questions carry equal marks.