LESSON PLAN

Mathematics Department

G. C.Hisar

2023-24

B.A. \& B.Sc.

Odd Semesters

CLASS:B.Sc./B.A.-I Year I Sem

NAME OF PAPER - ALGEBRA
PAPER CODE (for B.Sc.) - CML-106
PAPER CODE (for B. A.) - BAMH-101

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Symmetric, Skew-symmetric. Hermitian and SkewHermitian.Rank of a matrix. Inverse of a matrix. 2 Row rank andcolumn rank of a matrix. 3. Eigenvalues, eigenvectors and the characterstic equation of a matrix, Minimal polynomial of a matrix. 4 Cayley Hamilton theorem and its use in finding inverse of a matrix.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. .Application of matrices to a system of linear (both homogenous and non-homogenous) equations. 2Theorems on consistency of a system of linear equations. 3. Unitary and Orthogonal MatricesBilinear and Quadratic forms 4..Cononical form of a Bilinear form. Matrix notation of bilinear and Quadratic Form
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Relations between the roots and coefficients of general polynomial equation in one variable. 2.Solution of polynomial equations having conditions on roots. 3.Common roots and multiple roots. 4.. Transformation of equations
4.	$4^{\text {th }}$	$\mathbf{1 s t}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Nature of the roots of an equation. 2.Solution of cubic equations (Cardan's method). 3.Biquadratic equations and their solutions,..Descarte's rule of signs, Ferrari 's Method. Descarte's rule of signs of polynomial.

CLASS:B.Sc./B.A.-I Year I Sem

NAME OF PAPER -CALCULUS
PAPER CODE (for B.Sc.) - CML-107
PAPER CODE (for B. A.) - BAMH-102

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	$1 . \varepsilon-\delta$ definition of the limit of a function, Basic properties of limits, 2. Continuous functions and classification of discontinuities. 3. Successive differentiation. 4. Leibnitz theorem, Maclaurin and Taylor series expansions.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Asymptotes in Cartesian coordinates, Intersection of curve and its asymptotes..Asymptotes in polar coordinates, 2. Curvature, Radius of curvature for Cartesian curves, parametric curves, polar curves, 3. Tests for concavity and convexity, singular points, 4. ., Point of inflexion, Multiple points, Cusps, nodes and conjugate points, species of cusps
3.	$3^{\text {rd }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Tracing of curves in Cartesian, parametric and polar co-ordinates. 2. Reduction formulae, .Derivation of Reduction formulae by connecting with other integral. 3. Rectification. 4. Length of curve in Cartesian,Parametric and polar curves.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Quadrature(area) Sectorial area. 2. Area bounded by closed curves.Area enclosed by curves in polar form. 3. .Volumes and Surfaces of solids of revolution. 4. Volume bounded between two solids.

CLASS: B.Sc. Mathematics-I Year $1^{\text {st }}$ Sem

NAME OF PAPER-Mathematics Lab-I (Practical)
PAPER CODE (for B.Sc.) - CMP-110
PAPER CODE (for B. A.) - BAMH (P)-103

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week \& Last week	Part A: Introduction to Programming in C Data types, Operators andexpressions, Input / outputs functions. Decisions control structure: Decision statements, Logical and conditional statements, Implementation of Loops-for, while, do while; Switch Statement \& Case control structures. Part B: Following Program should be done as Practical:- 1. Program to interchange the value of two variables. 2. Program to calculate compound interest. 3. Program for testing a leap year.
2.	$2^{\text {nd }}$	1 $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	4. Program to find greatest of three numbers. 5. Program to calculate Gross salary of an employee. 6. Program to prepare electricity Bill. 7. Program to find roots of a quadratic equation.
3.	$3^{\text {rd }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	8. Program to provide output of a given function. 9. Program to display table of an input number 10. Program to find reverse of a number 11. Program to generate Fibonacci series.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	12. Program to check whether number is prime or not. 13. Program to generate first n prime numbers. 14. Program to check a number is Armstrong or not. 15. Program to convert a number to its binary equivalent.

CLASS:B.Sc./B.A.-II Year III Sem
 NAME OF PAPER - ADVANCE CALCULUS
 PAPER CODE (for B.Sc.) - CML-306
 PAPER CODE (for B. A.) - BAMH-201

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Continuity, Sequential Continuity, properties of continuous functions, Uniform continuity, chain rule ofdifferentiability. 2. Mean value theorems; Rolle's Theorem and Lagrange's mean value theorem and theirgeometrical interpretations. 3. Taylor's Theorem with various forms of remainders, Darboux intermediate valuetheorem for derivatives, 4. Indeterminate forms.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Limit and continuity of real valued functions of two variables. Partial differentiation. 2. Total Differentials;Composite functions \& implicit functions. 3. Change of variables. Homogenous functions \& Euler's theoremon homogeneous functions. 4. Taylor's theorem for functions of two variables
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Differentiability of real valued functions of two variables. 2. Schwarz and Young's theorems. Implicitfunction theorem. 3. Maxima, Minima and saddle points of two variables. 4. Lagrange's method of multipliers
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Jacobians, Beta and Gama functions, 2. Double and Triple integrals, 3. Dirichlets integrals, 4. change of order ofintegration in double integrals..

	CLASS:B.Sc./B.A.-II Year III Sem NAME OF PAPER - NUMERICAL ANALYSIS PAPER CODE (for B.Sc.) - CML-307 PAPER CODE (for B. A.) - BAMH-202		
SR. NO.	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	$\mathbf{1}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Finite Difference operators and their relations, difference table, finding the missing terms and effect of errorin a difference tabular values, 2.Interpolation with equal intervals: derivations of Newton's forward andNewton's backward interpolation formulae and their applications, 3. Interpolation with unequal intervals: derivations of Newton's divided difference \& 4.Lagrange's Interpolation formulae and their applications.
2.	$2^{\text {nd }}$	$\mathbf{1 s t}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Central Difference interpolation formulae: derivations of Gauss's forward and Gauss's backwardinterpolation formulae, Sterling,Bessel formulae and their applications. 2.Numerical Differentiation: Relation between difference operator and derivative operator, 3.Derivative of a function using interpolation formulae (asstudied in Sections - I \& II). 4. Numerical Integration: Newton-Cote's Quadrature formula, Trapezoidal rule, Simpson's one- third rule and Simpson's three-eighth rule, Chebychev formula, Gauss Quadrature formula.
3.	$3^{\text {rd }}$		1.Solution of Algebraic and Transcendental equations: Bisection method, Regula-Falsi method, Secant method,Newton-Raphson's method, 2.Newton's iterative method for finding pth root of a number. 3.Simultaneous linearalgebraic equations: Gausselimination method, Gauss-Jordan method, triangularization method (LUdecomposition method). 4.Iterative method, Jacobi's method, Gauss-Seidal's method, Relaxation method.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	Eigen Value Problems: Power method, Jacobi's method, Given's method, House-Holder's method. Numerical solution of ordinary differential equations: Single step methods-Picard's method. Taylor's series method, Euler's method, Modified Euler's method, Runge-Kutta Methods. Multiple step methods; Predictorcorrector method, Milne-Simpson's method

CLASS: B.Sc. Mathematics-II Year 3 ${ }^{\text {rd }} \mathbf{S e m}$
 NAME OF PAPER-Mathematics Lab-III (Practical)
 PAPER CODE (for B.Sc.) - CMP-310
 PAPER CODE (for B. A.) - BAMH (P)-203

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week \& $2^{\text {nd }}$ week $3^{\text {rd }}$ week \& Last week	1. To interpolate the data using Newton's forward interpolation formula 2. To interpolate the data using Newton's backward interpolation formula
2.	$2^{\text {nd }}$	$\mathbf{1 s t}^{\text {st }}$ week \& $2^{\text {nd }}$ week $3^{\text {rd }}$ week \& Last week	3. To interpolate the data using Gauss's forward interpolation formula 4. To interpolate the data using Gauss's backward interpolation formula
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week \& $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	5. To interpolate the data using Lagrange's interpolation formula 6. To find the roots of algebraic and transcendental equations using Bisection method. 7. To find the roots of algebraic and transcendental equations using Regula-Falsi method.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week \& $2^{\text {nd }}$ week $3^{\text {rd }}$ week \& Last week	8. To find the roots of algebraic and transcendental equations using Secant method. 9. To find the roots of algebraic and transcendental equations using Newton-Raphson's method.

CLASS:B.Sc./B.A.-III Year V Sem
 NAME OF PAPER - GROUPS AND RINGS
 PAPER CODE (for B.Sc.) - CML-506(i)
 PAPER CODE (for B. A.) - BAMH-301(i)

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Definition of a group.Example of abelian and nonabelian groups. The group Z_{n} of integers under addition modulo n and the group of (n) of units under multiplication modulo n. 2.Generator of a group. Cyclic groups. 3.Permutations groups. Alternating groups, Cayley's theorem. Subgroups and Subgroup criteria. 4.Cosets, Left and right cosets, properties of cosets.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Index of a sub-group. Coset decomposition, 2. Lagrange's theorem on groups and its consequences, Normal subgroups, Quotient groups, 3.Homomorphisms, isomorphisms, automorphisms on group. 4.Center of a group and class equation of a group and derived group of a group.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Introduction to Rings, Subrings, Integral domains and Fields, 2.Characteristics of a ring. Ring homomorphisms, Theorems on Ring homomorphisms. 3. Ideals (Principle, Prime and Maximal) and Quotient rings, 4.Field of quotients of an integral domain..
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Euclidean rings, Polynomial rings, Polynomials over the rational field, 2. The Eisenstein's criterion of irreducibility of polynomials over the field of rational numbers 3. Polynomial rings over commutative rings. Principal ideal domain, 4. Unique factorization domain.

CLASS:B.Sc./B.A.-III Year V Sem NAME OF PAPER - SEQUENCE AND SERIES PAPER CODE (for B.Sc.) - CML-507(i) PAPER CODE (for B. A.) - BAMH-302(i)			
$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Boundedness of the set of real numbers; least upper bound, greatest lower bound of a set, neighborhoods, interior points, isolated points, 2.limit points, open sets, closed set, interior of a set, closure of a set in real numbers and their properties. 3.Sequence: Real Sequences and their convergence, Theorem on limits of sequence, Bounded and monotonic sequences 4.Cauchy's sequence, Cauchy general principle of convergence, sub sequence, subsequential limits.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Infinite series: Convergence and divergence of Infinite Series, Comparison Tests of positive terms Infinite series, 2Cauchy's general principle of Convergence of series, Convergence and divergence of geometric series. 3.Hyper Harmonic series or p-series.Infinite series: DAlembert's ratio test, Raabe's test, Logarithmic test, 4.Cauchy's Nth root test, Gauss Test, Cauchy's Integral test, Cauchy's condensation test. Alternating series: Leibnitz's test, absolute and conditional convergence. Arbitrary series: Abel's lemma, Abel's test, Dirichlet's test.
3.	$3^{\text {rd }}$	$\mathbf{1 s}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Fourier's series: Fourier expansion of piecewise monotonic functions. 2.Properties of Fourier Co-efficients, Dirichlet's conditions. 3. Parseval's identity for Fourier series. 4.Fourier series for even and odd functions, Half range series, Change of Intervals.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Riemann integral: Definition and examples. Darboux's Theorem and condition of existence of Riemann's integral. 2.Integrabililty of continuous, monotonic functions and discontinuous functions. Properties of integrable functions. 3.Continuity and differentiability of integrable functions. Primitive. 4.The Fundamental theorem of integral calculus. Mean value theorems of integral calculus.

CLASS:B.Sc./B.A.-III Year V Sem
 NAME OF PAPER - NUMBER THEORY AND TRIGONOMETRY

PAPER CODE (for B.Sc.) - CML-508(i)
PAPER CODE (for B. A.) - BAMH-303(i)

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1 $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1 Linear Diophantine equation, prime counting function, 2.statement of prime number theorem, Goldbach conjecture, 3 linear congruences, complete set of residues, 4.Chinese remainder theorem, Fermat's little theorem, Wilson's theorem
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Number theoretic functions, sum and number of divisors, totally multiplicative functions, 2.the Möbius inversion formula, the greatest integer function, 3.Euler's phi-function, Euler's theorem, 4.reduced set of residues, some properties of Euler's phi-function.
3.	$3^{\text {rd }}$	$\mathbf{1}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Order of an integer modulo n, primitive roots for primes, 2.composite numbers having primitive roots, Euler's criterion, 3.the Legendre symbol and its properties, quadratic reciprocity, 4.quadraticcongruences with composite moduli.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Exponential, Logarithmic, Circular functions; $\sin (n x), \cos (n x), \tan (n x), \sin n x$, $\cos _{\mathrm{n} x}, \tan _{\mathrm{n}} \mathrm{X}$, 2.hyperbolic and inverse hyperbolic functions - simple problems. Gregory's series, 3.Summation of Trigonometric series, 4. Trigonometric expansions of sine and cosine as infinite products (without proof).

B.Com.

Odd Semesters

CLASS:B.Com. (General) and B.Com. (Honours)-I Year I Sem NAME OF PAPER - BUSSINESS MATHEMATICS

PAPER CODE - BC-105

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Matrices and Determinants: concept of matrix, types, and algebra of matrices; properties of determinants; 2.calculation of values of determinants up to third order, adjoint of a matrix, elementary row or column operations; 3.Finding inverse of a matrix through adjoint and elementary row or column operations; 4.solution of a system of linear equations having unique solution and involving not more than three variables.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Linear inequalities: 2. graphical solution of linear equalities in two variables, 3. solution of system of linear inequalities in two variables.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Linear programming-formulation of equation: 2. graphical method of solution; 3. problems relating to two variables including the case of mixed constraints; cases having no solution, 4. multiple solutions, unbounded solution and redundant constraints.
4.	$4^{\text {th }}$	$\mathbf{1}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Logarithms and 2. Anti-logarithms, 3. Permutations and 4. Combinations.

B.Sc. (Hons) Mathematics

Odd Semesters

CLASS:B.Sc.(Hons) Mathematics-I Year I Sem
 AME OF PAPER - Mathematics-I Basic Algebra
 PAPER CODE - BML-102

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \\ & \hline \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Symmetric, Skew-symmetric, Hermitian and skew Hermitian matrices. Elementary operations on matrices. 2. Rank of a matrices. Inverse of a matrix. Linear dependence and independence of rows and columns of matrices. Row rank and column rank of a matrix. 3. Eigenvalues, eigenvectors and the characteristic equation of a matrix. Minimal polynomial of a matrix. 4. Cayley Hamilton theorem and its use in finding the inverse of a matrix.
2.	$2^{\text {nd }}$	$\mathbf{1 s}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Applications of matrices to a system of linear (both homogeneous and non-homogeneous) equations. 2. Theorems on consistency of a system of linear equations. 3.Unitary and Orthogonal Matrices, 4.Bilinear and Quadratic forms.
3.	$3^{\text {rd }}$	$\mathbf{1}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Relations between the roots and coefficients of general polynomial equation in one variable. 2.Solutions of polynomial equations having conditions on roots. 3.Common roots and multiple roots. 4.Transformation of equations.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Nature of the roots of an equation, 2. Descarte's rule of signs. 3. Solutions of cubic equations (Cardon's method). 4. Biquadratic equations and their solutions.

PAPER CODE - BML-301

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1{ }^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1 Divisibility, G.C.D.(greatest common divisors), L.C.M.(least common multiple) Primes, 2.Fundamental Theorem of Arithemetic. Linear Congruences, 3.Fermat's theorem. Wilson's theorem and its converse. 4.Linear Diophanatine equations in two variables
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Complete residue system and reduced residue system modulo m . 2.Euler's ϕ function Euler's generalization of Fermat's theorem. Chinese Remainder Theorem. 3.Quadratic residues. Legendre symbols. Lemma of Gauss; Gauss reciprocity law. Greatest integer function [x]. 4.The number of divisors and the sum of divisors of a natural number n (The functions $d(n)$ and $\sigma(n)$). Moebius function and Moebius inversion formula.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week \& Last week	1.DeMoivre's Theorem and its Applications. 2. Expansion of trigonometrical functions. 3.Direct circular and hyperbolic functions and their properties.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Inverse circular and hyperbolic functions and their properties. 2.Logarithm of a complex quantity. 3.Gregory's series. 4. Summation of Trigonometry series.

CLASS:B.Sc.(Hons) Mathematics-II Year IIISem
 NAME OF PAPER - Ordinary Differential Equations
 PAPER CODE - BML-302

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Geometrical meaning of a differential equation. Exact differential equations, integrating factors. 2.First order higher degree equations solvable for x, y, p 3.Lagrange's equations, Clairaut's equations. 4.Equation reducible to Clairaut's form. Singular solutions.
2.	$2^{\text {nd }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Orthogonal trajectories: in Cartesian coordinates and polar coordinates. 2.Self orthogonal family of curves. Linear differential equations with constant coefficients. 3.Homogeneous linear ordinary differential equations. 4.Equations reducible to homogeneous
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Linear differential equations of second order: Reduction to normal form. 2.Transformation of the equation by changing the dependent variable/ the independent variable. 3.Solution by operators of non-homogeneous linear differential equations. Reduction of order of a differential equation. 4. Method of variations of parameters. Method of undetermined coefficients.
4.	$4^{\text {th }}$	$\mathbf{1 s}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Ordinary simultaneous differential equations. Solution of simultaneous differential equations involving operators $(d / d x)$ or ($d / d t$) etc. 2.Simultaneous equation of the form $d x / P=d y / Q$ $=d z / R$. 3.Total differential equations. Condition for $P d x+$ $Q d y+R d z=0$ to be exact. 4.General method of solving $P d x+Q d y+R d z=0$ by taking one variable constant. Method of auxiliary equations.

CLASS:B.Sc.(Hons) Mathematics-II Year IIISem
 NAME OF PAPER - Advanced Calculus
 PAPER CODE - BML-303

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1{ }^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Continuity, Sequential Continuity, properties of continuous functions, Uniform continuity, chain rule of differentiability. 2.Mean value theorems; Rolle's Theorem and Lagrange's mean value theorem and their geometrical interpretations. 3.Taylor's Theorem with various forms of remainders, 4.Darboux intermediate value theorem for derivatives, Indeterminate forms.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Limit and continuity of real valued functions of two variables. 2.Partial differentiation. Total Differentials; Composite functions \& implicit functions. Change of variables. 3.Homogenous functions \& Euler's theorem on homogeneous functions. 4.Taylor's theorem for functions of two variables
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Differentiability of real valued functions of two variables. 2.Schwarz and Young's theorems. Implicit function theorem. 3.Maxima, Minima and saddle points of two variables. 4. Lagrange's method of multipliers
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Curves: Tangents, Principal normals, Binormals, Serret-Frenet formulae. Locus of the centre of curvature, 2.Spherical curvature, Locus of centre of Spherical curvature, 3.Involutes, evolutes, Bertrand Curves. Surfaces: Tangent planes, one parameter family of surfaces, Envelopes.

CLASS:B.Sc.(Hons) Mathematics-II Year IIISem
 NAME OF PAPER - Vector Calculus
 PAPER CODE - BML-304

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Scalar and vector product of three vectors, product of four vectors. Reciprocal vectors. 2.Vector differentiation. 3.Scalar Valued point functions, vector valued point functions, 4.derivative along a curve, directional derivatives
2.	$2^{\text {nd }}$	$\mathbf{1 s}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Gradient of a scalar point function, geometrical interpretation of grad $\boldsymbol{\Phi}$, character of gradient as a point function. 2. Divergence and curl of vector point function, characters of Div \vec{f} and Curl \vec{f} as point function, examples. 3. Gradient, divergence and curl of sums and product and their related vector identities. 4.Laplacian operator.
3.	$3^{\text {rd }}$	 Last week	1.Orthogonal curvilinear coordinates Conditions for orthogonality fundamental triad of mutually orthogonal unit vectors. 2.Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal curvilinear coordinates, Cylindrical co-ordinates and Spherical co-ordinates
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Vector integration; Line integral, 2.Surface integral, Volume integral. 3.Theorems of Gauss, Green \& Stokes and 4.problems based on these theorems.

CLASS: B.Sc.(Hons) Mathematics-II Year IIISem

NAME OF PAPER - Mathematical Statistics
PAPER CODE - BML-305

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Measures of Central Tendency and Location: Mean, median, mode, geometric mean, harmonic mean, partition values. 2.Measures of Dispersion:Absolute and relative measures of range, quartile deviation, 3.mean deviation, 4.standard deviation (σ), coefficient of variation.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Moments, Skewness and Kurtosis: 2.Moments about mean and about any point and derivation of their relationships, effect of change of origin and scale on moments, 3.Sheppard's correction for moments (without derivation), Charlier's checks, 4.Concepts of Skewness and Kurtosis.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Basic concepts in Probability,Bayes' theorem and its applications. 2.Random Variable and Probability Functions: 3.Definition and properties of random variables, discrete and continuous random variable, 4.Probability mass and density functions, distribution function.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Correlation for Bivariate Data: Concept and types of correlation, Scatter diagram, 2.Karl Pearson Coefficient (r) of correlation and rank correlation coefficient. 3.Linear Regression: Concept of regression, principle of least squares and fitting of straight line, derivation of two lines of regression, properties of regression coefficients, standard error of estimate obtained from regression line, 4.correlation coefficient between observed and estimated values. Angle between two lines of regression. Difference between correlation and regression.

CLASS:B.Sc.(Hons) Mathematics-II Year IIISem
 NAME OF PAPER - Special Functions-I

PAPER CODE - BML-306

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1{ }^{\text {st }}$	 Last week	1.Series solution of differential equations - Power series method, 2.Definitions of Beta and Gamma functions.
2.	$2^{\text {nd }}$	1st week \& $2^{\text {nd }}$ week Last week	1.Bessel equation and its solution: Bessel functions and their properties 2 Convergence, recurrence relations and generating functions, Orthogonality of Bessel functions
3.	$3^{\text {rd }}$	 Last week	1.Legendre and Hermite differentials equations and their solutions: 2.Legendre and Hermite functions and their properties-Recurrence Relations and generating functions..
4.	$4^{\text {th }}$	 Last week	1.Orhogonality of Legendre and Hermite polynomials. Rodrigues' Formula for Legendre \&Hermite Polynomials, 2.Laplace Integral Representation of Legendre polynomial

CLASS: B.Sc.(Hons) Mathematics-III Year V Sem
 NAME OF PAPER - Real Analysis
 PAPER CODE - BML-501

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Riemann integral, 2.Integrability of continuous and monotonic functions, 3. The Fundamental theorem of integral calculus. 4. Mean value theorems of integral calculus.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Improper integrals and their convergence, Comparison tests, 2.Abel's and Dirichlet's tests, Frullani's integral, Integral as a function of a parameter. 3.Continuity, Differentiability and integrability of an integral of a function of a parameter.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Definition and examples of metric spaces, neighborhoods, limit points, interior points, open and closed sets, 2. closure and interior, boundary points, subspace of a metric space, equivalent metrics, 3.Cauchy sequences, completeness, Cantor's intersection theorem, 4.Baire's category theorem, contraction Principle
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Continuous functions, uniform continuity, compactness for metric spaces, 2. sequentialcompactness, BolzanoWeierstrass property, 3.total boundedness, finite intersection property,continuity in relation with compactness, 4.connectedness, components, continuity in relation with connectedness.

$\begin{aligned} & \text { SR. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Definition of a group with example and simple properties of groups, 2. Subgroups and Subgroup criteria, Generation of groups, cyclic groups, 3. Cosets, Left and right cosets, Index of a sub-group Coset decomposition, 4. Largrage's theorem and its consequences, Normal subgroups, Quotient groups,
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Homoomorphisms, isomophisms, automorphisms and 2.inner automorphisms of a group. Automorphisms of cyclic groups, 3. Permutations groups. Even and odd permutations.Alternating groups, Cayley's theorem, 4. Center of a group and derived group of a group.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Introduction to rings, subrings, integral domains and fields, 2.Characteristics of a ring. Ring homomorphisms, 3. ideals (principle, prime and Maximal) and Quotient rings, 4.Field of quotients of an integral domain.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Euclidean rings, 2.Polynomial rings, Polynomials over the rational field, The Eisenstein's criterion, 3. Polynomial rings over commutative rings, 4.Unique factorization domain, R unique factorization domain implies so is $R[X 1$, $X 2, \ldots \ldots . . . X n]$

CLASS: B.Sc.(Hons) Mathematics-III Year V Sem
 NAME OF PAPER - Programming in C \& Numerical Methods
 PAPER CODE - BML-503

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	 Last week	1.Programmer's model of a computer Algorithms, Flow charts, Data types, 2.Operators and expressions, Input / Output functions.
2.	$2^{\text {nd }}$	$\mathbf{1}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Decisions control structure: Decision statements, 2.Logical and conditional statements, Implementation of Loops, 3.Switch Statement \& Case control structures. 4.Functions, Preprocessors and Arrays.
3.	$3^{\text {rd }}$	$\mathbf{1 s}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Strings: Character Data Type, Standard String handling Functions, Arithmetic Operations on Characters. 2.Structures: Definition, using Structures, use of Structures in Arrays and Arrays in Structures. Pointers: 3.Solution of Algebraic and Transcendental equations: Bisection method, Regula-Falsi method, Secant method, 4.Newton-Raphson's method. Newton's iterative method for finding pth root of a number.
4.	$4^{\text {th }}$	$\begin{gathered} \hline 1^{\text {st }} \text { week } \\ \& \\ 2^{\text {nd }} \text { week } \\ 3^{\text {rd }} \text { week } \\ \& \\ \text { Last week } \\ \hline \end{gathered}$	1.Simultaneous linear algebraic equations: Gauss-elimination method, Gauss-Jordan method, Triangularization method (LU decomposition method). Crout's method, 2.Cholesky Decomposition method. Iterative method, Jacobi's method, Gauss-Seidal's method, Relaxation method.

CLASS: B.Sc.(Hons) Mathematics-III Year V Sem
 NAME OF PAPER - Programming in C \& Numerical Methods-Lab PRACITAL

PAPER CODE - BMP-504

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	 Last week	Programming in C 1. Generates first n prime numbers. 2. Calculate compound interest. 3. Solve a quadratic equation. 4. Swap two numbers using pointers. 5. Pattern matching of two strings.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	6. Count number of vowels and consonants in a sentence. 7. Reverse a string character by character and word by word. 8. Encryption and decryption of a string. 9. Find GCD of two integers and use it to find the GCD of three integers using functions.
3.	$3^{\text {rd }}$	 Last week	10.Secant Method. 11. Regula-Falsi Method. 12. Bisection Method. 13. Newton- Raphson Method. 14. Jacobi- Method.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	15. Gauss Elimination Method . 16. Gauss Seidel Method . 17. Gauss Jordan Method . 18. Crout's Method.

CLASS: B.Sc.(Hons) Mathematics-III Year V Sem
NAME OF PAPER - Sequence and Series
PAPER CODE - BML-505

$\begin{array}{c}\text { SR. } \\ \text { NO. }\end{array}$	MONTHS	PERIOD	TOPICS
$\mathbf{1 .}$	$\mathbf{1}^{\text {st }}$	$\mathbf{1 s t}^{\text {st week }}$	$\begin{array}{l}\text { 1.Boundedness of the set of real numbers; least } \\ \text { upper bound, greatest lower bound of a set, }\end{array}$
2.neighborhoods, interior points, isolated points,			
limit points,			

a set in real numbers and their properties. Bolzano-\end{array}\right\}\)

CLASS: B.Sc.(Hons) Mathematics-III Year V Sem

NAME OF PAPER - Operations Research -II
PAPER CODE - BML-506

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Inventory Control: introduction of inventory, factors affecting inventory, 2.Inventory models, Deterministic models: 3.Economic order quantity model when shortages are allowed/not allowed, 4. price discounts model, multi-item inventory models.
2.	$2^{\text {nd }}$	 Last week	1.Queuing Theory: Basic characteristics of queuing system, Birth-death equations, 2.Steady state solution of Markovian queuing models with single and multiple servers with infinite capacity (M/M/1 and M/M/c), and with limited capacity ($\mathrm{M} / \mathrm{M} / 1 / \mathrm{K}$ and M/M/c/K).
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week \& $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Sequencing problems: Processing of n jobs through 2 machines, n jobs through 3 machines, 2 jobs through m machines, n jobs through m machines. 2.Replacement problems: Replacement of items whose running cost increases with time, 4.Replacement policies for the items that fail completely - Individual and the group replacement policies.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.PERT and CPM: Introduction of PERT and CPM, 2.Earliest and latest times, 3.Determination of critical path and various types of floats, 4.Probablistic and cost considerations in project scheduling

M.Sc.
 Mathematics

Odd Semesters

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Zassenhaus's lemma, Normal and Subnormal series. Scheiers Theorem, 2.Composition Series. Jordan-Holder theorem. 3.Commutators and their properties. 4.Three subgroup lemma of P.Hall.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Central series. Nilpotent groups. 2.Upper and lower central series and their properties. Invariant (normal) and chief series. 3.Solvable groups. Derived series. 4.Field theory. Prime fields.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Extension fields. Algebraic and transcendental extensions. 2.Algebraically closed field. Conjugate elements. Normal extensions. 3Separable and inseparable extensions. 4.Perfect fields. Construction with ruler and campass. Finite fields
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Roots of unity. Cyclotomic Polynomial in $\square \mathrm{n}$ (x). 2.Primitive elements. Automorphisms of extensions. 3.Galois extension. Fundamental theorem of Galois theory. 4.Solutions of polynomial equations by radicals. Insolvability of the general equation of degree 5 by radicals.

PAPER CODE -MAL-512

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week \& $2^{\text {nd }}$ week Last week	1.Definition and existence of Riemann-Stieltjes integral, properties of the integral, integration and differentiation, 2.the fundamental theorem of Calculus, integration of vector-valued functions, rectifiable curves
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Sequences and series of functions, point-wise and uniform convergence, Cauchy criterion for uniform convergence, 2.Weierstrass M-test, Abel's and Dirichlet's tests for uniform convergence, uniform convergence and continuity, 3.uniform convergence and Riemann-Stieltjes integration, uniform convergence and differentiation, 4.Weierstrass approximation theorem, Power series, uniqueness theorem for power series, Abel's theorems.
3.	$3^{\text {r }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Functions of several variables, linear transformations, derivatives in an open subset of R_{\square}, chain rule, 2.partial derivatives, interchange of the order of differentiation, derivatives of higher orders, 3.Taylor's theorem, Inverse function theorem, Implicit function theorem, 4.Jacobians, extremum problems with constraints, Lagrange's multiplier method.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Set functions, intuitive idea of measure, elementary properties of measure, 2.measurable sets and their fundamental properties, 3.Lebesgue measure of sets of real numbers, algebra of measurable sets, 4.Borel sets, equivalent formulation of measurable sets in terms of open, closed, $F \square$ and $G \square$ sets, non measurable sets.

PAPER CODE -MAL-513

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1{ }^{\text {st }}$	1st week \& $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Moments and products of Inertia, Theorems of parallel and perpendicular axes, principal axes, 2.Themomental ellipsoid, Equimomental systems, Coplanar distributions. Generalized cooordinates. 3.Holonomic and Non-holonomic systems. Scleronomic and Rheonomic systems. 4.Lagrange's equations for a holonomic system.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Lagrange's equations for a conservative and impulsive forces. Kinetic energy as quadratic function of velocities. 2.Generalized potential, Energy equation for conservative fields.Hamilton's variables. Donkin's theorem. 3.Hamilton canonical equations. Cyclic coordinates. Routh's equations. 4. Poisson's Bracket. Poisson's Identity. Jacobi-Poisson Theorem.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Hamilton's Principle. Principle of least action. Poincare Cartan Integral invariant. Whittaker's equations. 2.Jacobi's equations. Hamilton-Jacobi equation. Jacobi theorem. Method of separation of variables. Lagrange Brackets. 3.Condition of canonical character of a transformation in terms of Lagrange brackets and Poisson brackets. 4.Invariance of Lagrange brackets and Poisson brackets under canonical transformations.
4.	$4^{\text {th }}$	$\mathbf{1}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Gravitation: Attraction and potential of rod, disc, spherical shells and sphere. 2.Laplace and Poisson equations. Work done by selfattracting systems. 3.Distributions for a given potential. Equipotential surfaces. 4.Surface and solid harmonics. Surface density in terms of surface harmonics.

CLASS:M.Sc. Mathematics-I Year I Sem NAME OF PAPER -Ordinary Differential Equation-I
 PAPER CODE -MAL-514

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Initial-value problem and the equivalent integral equation, E-approximate solution, Cauchy-Euler construction of an ε-approximate solution, 2.Equicontinuous family of functions, Ascoli-Arzela theorem, Cauchy-Peano existence theorem. 3.Uniqueness of solutions, Lipschitz condition, 4.Picard-Lindelof theorem for local existence and uniqueness of solutions, solution of initial-value problems by Picard method.
2.	$2^{\text {nd }}$	$\mathbf{1 s t}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Approximate methods of solving first-order equations: Power Series Methods, Numerical Methods. 2 Continuation of solutions, Maximum interval of existence, 3.Extension theorem, Dependence of solutions on initial conditions and function. 4. Matrix method for homogeneous first order systems, nth order equation
3.	$3^{\text {rd }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Total differential equations: Condition of integrability, 2.Methods of Solution. 3.Gronwall's differential inequality, 4.comparison theorems involving differential inequalities.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Zeros of solutions, Sturms separation and comparison theorems. 2.Oscillatory and nonoscillatory equations, Riccati's equation and its solution, 3.Pruffer transformation, Lagrange's identity and Green's formula for second-order equation, 4. Sturm-Liouville boundary-value problems, properties of eigen values and eigen functions.

CLASS:M.Sc. Mathematics-I Year I Sem
 NAME OF PAPER -Complex Analysis-I
 PAPER CODE -MAL-515

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Cauchy Riemann Equations, Analytic functions, Reflection principle, 2.Complex Integration, Antiderivatives, 3.Cauchy-Goursat Theorem, Simply and Multiply connected domains, 4.Cauchy's Integral formula, Higher Order derivatives,
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Morera's theorem, Cauchy's inequality, 2.Liouville's theorem, The fundamental theorem of Algebra, 3.Maximum Modulus Principle, Schwarz lemma, 4.Poisson's formula, Taylor's Series, Laurent's Series.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Isolated Singularities, Meromorphic functions, 2.Argument principle, Rouche's theorem, 3.Residues, Cauchy's residue theorem, 4.Evaluation of Integrals, MittagLeffler's expansion theorem.
4.	$4^{\text {th }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Branches of many valued functions with special reference to $\arg \mathrm{z}, \log \mathrm{z}, \mathrm{za}$. 2. Bilinear transformations, their properties and 3.classification, definition and examples of conformal mapping.

CLASS:M.Sc. Mathematics-I Year I Sem NAME OF PAPER -PROGRAMMING WITH FORTRAN (THEORY) PAPER CODE -MAL-516

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Computer Programming in Fortran 90/95: Numerical constants and variables, arithmetic expressions; implicit declaration, named constants, input/output; 2.List directed input/output statements, 3.Format specifications. Declarations including KIND specifications, 4.Use of complex variables, Pointers
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1 Logical expressions and control flow; conditional flow; IF structure, Block DO loop Counted controlled Loops. 2.arrays; input/output of arrays, arrays with variable size using ALLOCATABLE statement, 3.arrays handling functions, 4. multidimensional arrays
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Strings, declaration of character variables, 2. character handling functions, operators on strings, 3.Subprograms, Types of Subprograms, Significance Functions; subroutines; 4. Procedures with array arguments, Recursion
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week $\boldsymbol{\&}$ Last week	1.Derived types, Elements of derived type, arrays and derived type 2.Processing files, Sequential file, 3. Direct Access file; creating and closing a file and 4.Accessing elements using pointers with example

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Definition and examples of topological spaces. Closed sets. Closure .2. Dense subsets.Neighbourhoods. Interior, exterior and boundary points of a set. Accumulation points andderived sets. 3.Bases and sub-bases. Subspaces and relative topology. Alternate methods ofdefining a topology in terms of Kuratowski Closure Operator and Neighbourhood Systems. 4.Continuous functions and homeomorphism.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Compactness. Continuous functions and compact sets. 2.Basic properties of compactness. Compactness and finite intersection property. Sequentially and countably compact sets. 3. Local compactness and one point compactification. 4.Compactness in metric spaces. Equivalence of compactness, countable compactness and sequential compactness in metric spaces.
3.	$3^{\text {rd }}$	$\mathbf{1 s}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Connected spaces. Connectedness on the real line. Components 2. Locally connectedspaces. First and Second Countable spaces. 3.Lindelof 's theorem. Separable spaces. Second Countability and Separability. 4.Separation axioms. T0, T1, and T2 spaces. Their characterizationand basic properties.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week \&Last week	1.Regular and normal spaces. Urysohn's Lemma. T3 and T4 spaces. 2.Complete regularityand Complete normality. $\mathrm{T} 3 / 1 / 2$ and T 5 spaces. 3.Product topological spaces, Projection mapping. 4.Tychonoff product topology in terms of standard sub-base and its characterizations.

CLASS:M.Sc. Mathematics-II Year IIISem NAME OF PAPER-PARTIAL DIFFERENTIAL EQUATIONS PAPER CODE -MAL-632

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Solution of Partial Differential Equations Transport Equation-Initial value Problem. 2.Non-homogeneous Equation. Laplace's Equation- 3.Fundamental Solution, Mean Value Formulas, Properties of Harmonic Functions, 4.Green's Function, Energy Methods..
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Wave Equation-Solution by Spherical Means, Nonhomogeneous Equations, 2.Energy Methods.Poisson's formula, 3.Kirchoff's formula,D. Alembert's formula, 4.Uniqueness of Solution Domainof Dependence of Solution.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Heat Equation-Fundamental Solution, Solution of initial value problem, Non Homogeneous Equation, 2.Mean Value Formula. Nonlinear First Order PDEComplete Integrals, 3.Envelopes, Characteristics, Hamilton-Jacobi Equations, 4. Hamilton's ODE, Hopf-Lax Formula, Weak Solutions, Uniqueness.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Representation of Solutions-Separation of Variables, Similarity Solutions (Plane and Travelling 2.Waves, Solitons, Similarity under Scaling), 3.Fourier and Laplace Transform, Hopf-Cole Transofrm, 4.Hodograph and Legendre Transforms, Potential Functions.

CLASS:M.Sc. Mathematics-II Year IIISem NAME OF PAPER -MECHANICS OF SOLIDS-I
 PAPER CODE -MAL-633

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Cartesian Tensor: Coordinate transformation, Cartesian Tensor of different order,.Sumor difference and product of two tensors. 2. Contraction theorem, Quotient law, Symmetric \&Skewsymmetric tensors, Kronecker tensor, 3. Alternate tensor and relation between them, Scalarinvariant of second order tensor, 4.Eigen values \& vectors of a symmetric second order tensor, Gradient, divergence \& curl of a tensor field.
2.	$2^{\text {nd }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Analysis of Strain: Affine transformations. Infinitesimal affine deformation 2. Geometricalinterpretation of the components of strain. Strain quadric of Cauchy.Principal strains andinvariants. 3.General infinitesimal deformation.Saint- Venant' s equations of Compatibility. 4Analysis of Stress: Stress tensor.Equations of equilibrium. Transformation ofcoordinates.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Stress quadric of Cauchy. Principal stress and invariants. 2.Maximum normal and shearStresses 3.Equations of Elasticity: Generalised Hooke's law. 4.Homogeneous isotropic media.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Elastic moduli for isotropic media, 2.Equilibrium and dynamic equations for an isotropicelastic solid. 3.Strain energy function and its connection with Hooke's law. 4.BeItrami-MicheIlcompatibility equations. SaintVenant' s principle..

CLASS:M.Sc. Mathematics-II Year IIISem NAME OF PAPER -Computing Lab-II (MATLAB Programming \& Applications)
 PAPER CODE -MAL-634

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.User-Defined Functions and Function Files: Main Features of a Function file, Saving aFunction File, Using a User-Defined Function, 2.Comparison between Script Files and Function Files, Anonymous and Inline Functions: Anonymous Functions, Inline Functions. 3.Functions:Using Function Handles for Passing a Function into a Function, Using a Function Name for Passing a Function into a Function. 4.Subfunctions, Nested Functions..
2.	$2^{\text {nd }}$	1 $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Polynomials: Value of a Polynomial, Roots of a Polynomial, Addition, Multiplication and Division of Polynomials, 2.Derivatives of Polynomials. Curve Fitting with Polynomials, The polyfit Function, Curve Fitting with Functions other than Polynomials. 3.Applications in Numerical Analysis: Solution of an Equation with one Variable, Minimum or a Maximum of a Function, 4.Numerical Integration, Ordinary Differential Equations.
3.	$3^{\text {rd }}$	$\mathbf{1 s t}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Three Dimensional Plots: Line Plots, Mesh and Surface Plots, Plots with Special Graphics, 2.The View Command.Symbolic Math: Solving Algebraic Equations, 3.Differentiation, Integration, Solving an OrdinaryDifferential Equation, Plotting Symbolic Expressions, 4.Numerical Calculations with Symbolic Expressions.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Numerical Methods - Interpolation : Lagrange's interpolation formula, 2.Newton Gregoryforward interpolation formula, Newton Gregory backward interpolation formula. 3.Solution of asystem of Linear Equations: (Unique solution case only) :Gauss - Elimination Method, Gauss - Jordan Method. 4.Solution of Ordinary Differential Equations: Euler's Method,Euler's Modified Method , RungeKutta Second and Fourth order Method..

CLASS:M.Sc. Mathematics-II Year IIISem NAME OF PAPER -FLUID MECHANICS
 PAPER CODE -MAL-636

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Basics of Fluid Kinematics: General consideration of fluid, Lagrangian and Eulerian approach, 2.Substantial derivative, Stream lines, Path lines, Streak lines, Divergence of a flow field, 3.Translation, deformation and rotation of fluid element, Irrotational and rotational motions. Vortex lines, Reynolds Transport Theorem, 4.Equation of Continuity. Euler's equation of motion, Bernoulli's theorem, Kelvin's circulation theorem, Vorticity equation.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Energy equation for an incompressible flow. 2.Boundary conditions, Kinetic energy of liquid, 3.Axially symmetric flows, Motion of a sphere through a liquid at rest at infinity, 4.Liquid streaming past a fixed sphere, force on a sphere, Equation of motion of a sphere.
3.	$3^{\text {rd }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Vorticity and Rotation, The Velocity potential φ, Stream functions ψ, Stokes stream functions. 2.Uniform flow, Sources, Sinks and doublets, Images in a rigid impermeable infinite plane and in impermeable spherical surfaces, 3.Conformal mapping, Milne-Thomson Circle theorem, Application to fluid mechanics, 4.Blasius theorem, Joukovskii transformation, JoukovskiiAerofoils
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Two-dimensional irrotational motion produced by motion of circular, 2.co-axial andelliptic cylinders in an infinite mass of liquid, 3. Vortex motion and its elementary properties, 4.Kelvin's proof of permanence, motion due to rectilinear vortices..

CLASS:M.Sc. Mathematics-II Year IIISem NAME OF PAPER -ADVANCED DISCRETE MATHEMATICS PAPER CODE -MAL-637

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1{ }^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Formal Logic - Statements, Symbolic, Representation and Tautologies, Quantifiers, PropositionLogic. 2. Lattices - Lattices as partially ordered sets, Their properties, Lattices as Algebraicsystems, 3. Some special Lattices, e.g., complete, complemented and Distributive Lattices. Sets 4.Some Special Lattices e.g., Bounded, Complemented \& Distributive Lattices.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Boolean Algebra - Boolean Algebra as Lattices, Various Boolean Identities, The Switching Algebra example, Join - irreducible elements, 2. Atoms and Minterms, Boolean Forms and Their Equivalence, Minterm Boolean Forms, 3. Sum of Products canonical Forms, Minimization ofBoolean Functions, 4. Applications of Boolean Algebra to Switching Theory (using AND, OR andNOT gates).
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	Graph Theory - Definition of Graphs, Paths, Circuits, Cycles and Subgraphs, InducedSubgraphs, 2. Degree of a vertex, Connectivity, Planar Graphs and their properties, 3.Euler'sFormula for Connected Planar Graph, 4.Complete and Complete Bipartite Graphs,
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Trees, Spanning Trees, Minimal Spanning Trees, Matrix Representation of Graphs, 2.Euler's theorem on the Existence of Eulerian Paths and circuits, 3. Directed Graphs, Indegree andoutdegree of a vertex, Weighted undirected Graphs, 4.Strong Connectivity and Warshall'sAlgorithm, Directed Trees, Search Trees, Tree Traversals.

B.A. \& B.Sc.

Even Semesters

CLASS: B.Sc./B.A. -I Year II Sem
 NAME OF PAPER - Ordinary Diff. Eqn. \& Laplace Transform
 PAPER CODE(for B.Sc) -CML-206
 PAPER CODE(for B.A.) - BAMH-104

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	1st	1 $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Geometrical meaning of a differential equation. Exact differential equations, integrating factors. 2. First order higher degree equations solvable for $\mathrm{x}, \mathrm{y}, \mathrm{p}$ Lagrange's equations, 3 Clairaut's equations. Equation reducible to Clairaut's form. 4. Singular solutions.
2.	2nd	$\mathbf{1}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Orthogonal trajectories: in Cartesian coordinates and polar coordinates. 2 Self orthogonal family of curves.. Linear differential equations with constant coefficients. 3 Homogeneous linear ordinary differential equations. 4 Equations reducible to homogeneous
3.	3rd	$\mathbf{1}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Linear differential equations of second order: 2. Reduction to normal form. 3. Transformation of the equation by changing the dependent variable/ the independent variable. 4. Method of variations of parameters.
4.	4th	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Laplace Transforms - Existence theorem for Laplace transforms, Linear property of the Laplace transforms, Shifting theorems, 2.Laplace transforms of derivatives and integrals, 3. Inverse Laplace transforms, convolution theorem, 4.solution of ordinary differential equations using Laplace transform.

CLASS: B.Sc./B.A. -I Year II Sem
 NAME OF PAPER - VECTOR CALCULUS AND GEOMETRY

PAPER CODE(for B.Sc.) -CML-207
PAPER CODE(for B.A.) - BAMH-105

$\begin{array}{\|l} \hline \text { SR. } \\ \text { NO. } \\ \hline \end{array}$	MONTHS	PERIOD	TOPICS
1.	1st	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Scalar and vector product of three vectors, derivative along a curve, directional derivatives. 2. Gradient of a scalar point function.Geometrical interpretation of grad ϕ, 3.Divergence and curl of a vector point function. Gradient, divergence and curl of sums and product and their related vector identities. 4. Laplacian operators.
2.	2nd	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Line integral, surface integral, volume integral 2. Gauss divergence theorem, Divergence theorem in Cartesian coordinates 3. Green theorem, Stoke's theorem (relation between line and surface integral) Stoke's theorem in Cartesian form. 4. Green's Theorem in plane as special case of Stoke's Theorem
3.	3rd	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.General equation of second degree, 2 Tracing of conics.System of conics 3 Tangent at any point to the conic,Director circle of conic, 4.tangent and normal to the conic.
4.	4th	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	Sphere : plane section of a sphere. Sphere through a given circle. 2. Intersection of two spheres. Co-axial system of spheres. 3. Cones: Right circular cone, enveloping cone and reciprocal cone. 4.Cylinder: Right circular cylinder and enveloping cylinder

CLASS: B.Sc. Mathematics-I Year $\mathbf{2}^{\text {nd }}$ Sem NAME OF PAPER-Mathematics Lab-II (Practical)
 PAPER CODE (for B.Sc.) - CMP-210
 PAPER CODE (for B. A.) - BAMH (P)-106

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week \& $\mathbf{2}^{\text {nd }}$ week $3^{\text {rd }}$ week \& Last week	Part A: Introduction to Programming in C Strings: Character data type, Standard string handling functions, arithmetic operations on characters. Structures: definition, using structures, use of structures in arrays and arrays in structures, Functions.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	Part B: Following Program should be done as Practical:- 16. Program to add two matrices. 17. Program to multiply two matrices. 18. Program to find the inverse of a matrix. 19. Program to find transpose of a matrix.
3.	$3^{\text {rd }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	20. Program to find the sum of a series. 21. Program to sort an entire array using bubble short. 22. Program to find trace of 3 X 3 Matrix. 23. Program to find largest of three numbers using function.
4.	$4^{\text {th }}$	$\mathbf{1}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	24. Program to find factorial of a number using recursion. 25. Program to generate n Fibonacci terms using recursion. 26. Program to count number of vowels and consonants in a given sentence. 27. Program to print a salary chart for employee of a company.

	CLASS: B.Sc./B.A. - II Year IV Sem NAME OF PAPER - Partial Differential Equations \& Special Functions PAPER CODE(for B.Sc) -CML-406 PAPER CODE(for B.A.) - BAMH-204		
$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	1st	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Partial differential equations: Formation, order and degree. 2.Linear and non-linear partial differential equations of the first order: Complete solution. 3.Singular solution, General solution, Solution of Lagrange's linear equations. 4.Charpit's general method of solution, Compatible systems of first order equations, Jacobi's method.
2.	2nd	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Linear partial differential equations of second and higher orders, Linear and non-linear homogeneous and nonhomogeneousequations with constant coefficients, 2.Partial differential equation with variable coefficientsreducible to equations with constant coefficients, their complimentary functions and particular integrals, 3.Equations reducible to linear equations with constant coefficients. 4.Method of separation of variables: Solution of Laplace's equation, Wave equation (one and two dimensions), Diffusion (Heat) equation (one and two dimension) in Cartesian Co-ordinate system.
3.	3rd	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Classification of linear partial differential equations of second order, hyperbolic, parabolic and elliptic types, 2. Reduction of second order linear partial differential equations to Canonical (Normal) forms and their solutions, 3. Solution of linear hyperbolic equations, Monge's method for partial differential equations of second order,Cauchy's problem for second order partial differential equations, 4.Characteristic equations and characteristic curves of second order partial differential equation.
4.	4th	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Series solution of differential equations - Power series method. 2.Bessel equation and its solution: Besselfunctions and their properties-Convergence, recurrence,Relations and generating functions, Orthogonality of Bessel functions. 3.Legendre differential equation and its solution: Legendre function and its properties- Recurrence Relations and generating functions. 4. Orthogonality of Legendre polynomial. Rodrigues' Formula forLegendre Polynomial

CLASS: B.Sc./B.A. - II Year IV Sem
 NAME OF PAPER - MECHANICS-I
 PAPER CODE(for B.Sc) -CML-407
 PAPER CODE(for B.A.) - BAMH-205

SR. NO	MONTHS	PERIOD	TOPICS
1.	1st	1st week	1. Forces in two dimension (co-planner), triangle law and polygon law of forces, 2.Lami’s theorem, resultant of concurrent and coplanar forces, conditions of equilibrium of concurrent forces. 3.Parallel forces: like parallel and unequal unlike parallel forces, resultant and centre of parallel forces; 4.Moments and Couples.
2.	2nd week	3rd week	Last week

CLASS: B.Sc. Mathematics-II Year 4 ${ }^{\text {th }}$ Sem

NAME OF PAPER-Mathematics Lab-IV (Practical)
PAPER CODE (for B.Sc.) - CMP-410
PAPER CODE (for B. A.) - BAMH (P)-206

$\begin{array}{c}\text { SR. } \\ \text { NO. }\end{array}$	MONTHS	PERIOD	TOPICS
$\mathbf{1 .}$	$\mathbf{1}^{\text {st }}$		$\begin{array}{l}\text { Write down and execute the following programs } \\ \text { using C-Programming Language }\end{array}$
2.		$\begin{array}{c}\mathbf{2}^{\text {nd }} \text { week } \\ \mathbf{3}^{\text {rd }} \text { week \& } \\ \text { Last week }\end{array}$	$\begin{array}{l}\text { 1. To solve the system of linear equations using } \\ \text { Gauss -elimination method. }\end{array}$
2. To solve the system of linear equations using			
Gauss -Seidal iteration method.			

CLASS: B.Sc./ B.A. III Year VI Sem NAME OF PAPER - LINEAR ALGEBRA PAPER CODE (for B.Sc.) - CML-605(i) PAPER CODE (for B.A.) -BAMH-304(i)			
$\begin{array}{\|l\|} \hline \text { SR. } \\ \text { NO. } \\ \hline \end{array}$	MONTHS	PERIOD	TOPICS
1.	1st	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Vector spaces, subspaces, 2.Sum and Direct sum of subspaces, 3. Linear span, Linearly Independent and dependent subsets of a vector space. 4. Finitely generated vector space, Existence theorem for basis of a finitely generated vactor space,
2.	2nd	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Finite dimensional vector spaces, Invariance of the number of elements of bases sets, Dimensions, 2. Quotient space and its dimension Homomorphism and isomorphism of vector spaces, 3. Linear transformations and linear forms on vactor spaces, Vactor space of all the linear transformations 4.Null Space, Range space of a linear transformation, Rank and Nullity Theorem
3.	3rd	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Algebra of Liner Transformation 2. Minimal Polynomial of a linear transformation, Singular and non-singular linear transformations, 3. Matrix of a linear Transformation, Change of basis. 4.Eigen values and Eigen vectors of linear transformations
4.	4th	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Inner product spaces, Cauchy-Schwarz inequality, Orthogonal vectors, 2.Orthogonal complements, Orthogonal sets and Basis, 3. Bessel's inequality for finite dimensional vector spaces, 4.Gram-Schmidt, Orthogonalizationprocess,Adjoint of a linear transformation and its properties, Unitary Linear transformations.

CLASS: B.Sc./B.A. - III Year VI Sem
 NAME OF PAPER -MECHANICS II
 PAPER CODE(for B.Sc) -CML-606(i)
 PAPER CODE(for B.A.) - BAMH-305(i)

SR. NO	MONTHS	PERIOD	TOPICS
1.	1st	1st week	1.Analytical conditions of equilibrium of co-planar forces: Equilibrium of three forces, conditions of equilibrium, trigonometric theorem's, 2.conditions of equilibrium of co-planar forces (First, Second and Third form); Friction: Definition of friction and basic laws, 3.problems based on equilibrium of rods and ladders; Centre of gravity: Basic concepts and definitions, 4.centre of gravity of a uniform rod, a thin uniform lamina in the form of a parallelogram, a thin uniform triangular lamina, three uniform rods forming a triangle, a uniform quadrilateral lamina, lamina in the form of a trapezium, centre of gravity of a body by integration.
2.	2nd	3nd week	

CLASS: B.Sc./B.A. - III Year VI Sem NAME OF PAPER - REAL AND COMPLEX ANALYSIS

PAPER CODE(for B.Sc) -CML-607(i)
PAPER CODE(for B.A.) - BAMH-306(i)

SR. NO	MONTHS	PERIOD	TOPICS
1.	1st	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Definition and examples of metric spaces, neighborhoods, 2. Limit points, interior points, open and closed sets, closure and interior, boundary points, 3.Subspace of a metric space, equivalent metrics, 4.Cauchy sequences, completeness, Cantor's intersection theorem.
2.	2nd	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Baire's category theorem, Contraction Principle, 2.Continuous functions, uniform continuity, compactness for metric spaces, 3.Sequential CompactnessBolzano- WeierstrassProperty, 4.Totalboundedness, finite intersection property, continuity in relation with compactness, connectedness.
3.	3rd	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Improper integrals and their convergence, comparison tests, 2.Abel's and Dirichlet's tests 3.Frullani's integral, 4.Integral as a function of a parameter. Continuity, differentiability and integrability of an integral of a function of a parameter.
4.	4th	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Topology of complex numbers: Trigonometric, exponential, logarithmic and hyperbolic trigonometric functions. 2. Extended complex plane, Stereographic projection of complex numbers Continuity and differentiability of complex functions. 3. Analytic functions, Cauchy-Riemann equations,,harmonic conjugates, harmonic functions 4. Construction of analytic functions: direct method and Milne-Thomson method

CLASS: B.Sc./ B.A. III Year VI Sem

SKILL ENHANCEMENT
NAME OF PAPER - SOLID GEOMETRY
PAPER CODE (for B.Sc.) - CML-608(i)
PAPER CODE (for B.A.) -BAMH-307(i)

SR. NO.	MONTHS	PERIOD	TOPICS
1.	1st	$1^{\text {st }}$ week $\&$ $2^{\text {nd }}$ week $3^{\text {rd }}$ week $\&$ Last week	Central Conicoids: Equation of tangent plane.
2.	2nd	$1^{\text {st }}$ week $\&$ $2^{\text {nd }}$ week $3^{\text {rd }}$ week $\&$	Polar plane of a point. Enveloping cone of a coincoid. Last week
3.	3rd	$1^{\text {st }}$ week $\&$ $2^{\text {nd }}$ week $3^{\text {rd }}$ week $\&$	Paraboloids: Circular section,
4.		Last week Lth	Plane sections of conicoids.

B.Sc.(Hons)

Mathematics

Even Semesters

CLASS:B.Sc.(Hons) Mathematics-I Year IISem
 NAME OF PAPER - Elementary Mathematics-II
 PAPER CODE - BML-201

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Matrix Algebra : Introduction, types of matrices, addition and multiplication of matrix, transpose of matrix, concept of elementary row and column operations. 2.Determinant and its properties, minors, cofactors. Application of determinants in finding area of triangle. 3.Adjoint and inverse of square matrix. 4.Solution of homogeneous and non-homogeneous linear equations and condition for solution.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Differential Calculus : Differentiation of standard functions including function of a function (Chain rule). 2.Differentiation of implicit functions, logarithmic differentiation, parametric differentiation, elements of successive differentiation. 3.Integral Calculus : Integration as inverse of differentiation, indefinite integrals of standard forms, 4.Integration by parts, partial fractions and substitution. Formal evaluation of definite integrals.
3.	$3^{\text {rd }}$	$\mathbf{1 s}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Ordinary Differential Equations: Definition and formation of ordinary differential equations, equations of first order and first degree, 2.variable separable, homogeneous equations, linear equations (Leibnitz form) and differential equations reducible to these types, 3.Linear differential equation of order greater than one with constant coefficients, 4.complementary function and particular integrals.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Partial Differential Equations: Introduction and formation of P.D.E., solution of P.D.E., 2.linear equation of first order (Lagrange's Equation), Non-Linear Equation of first order. 3.Vector Calculus: Differentiation of vectors, scalar and vector point functions, gradient of scalar field and directional derivative, 4.divergence and curl of vector field and their physical interpretation.

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \\ & \hline \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Definition of the limit of a function. Basic properties of limits, 2.Continuous functions and classification of discontinuities. Differentiability. 3.Successive differentiation. Leibnitz theorem. 4.Maclaurin and Taylor series expansions.
2.	$2^{\text {nd }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Asymptotes in Cartesian coordinates, intersection of curve and its asymptotes, asymptotes in polar coordinates. 2.Curvature, radius of curvature for Cartesian curves, parametric curves, polar curves. Newton's method. Radius of curvature for pedal curves. Tangential polar equations. 3.Centre of curvature. Circle of curvature. Chord of curvature, evolutes. 4.Tests for concavity and convexity. Points of inflexion. Multiple points. Cusps, nodes \& conjugate points. Type of cusps.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Tracing of curves in Cartesian, parametric and polar co-ordinates. 2.Reduction formulae. 3.Rectification, 4. Intrinsic equations of curve.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Quadrature (area) Sectorial area. 2. Area bounded by closed curves. 3.Volumes and surfaces of solids of revolution. 4.Theorems of Pappu's and Guilden.

CLASS:B.Sc.(Hons) Mathematics-II Year IVSem
 NAME OF PAPER- Solid Geomerty
 PAPER CODE - BML-401

$\begin{array}{c}\text { SR. } \\ \text { NO. }\end{array}$	MONTHS	PERIOD	TOPICS		
$\mathbf{1 .}$	$\mathbf{1}^{\text {st }}$	$\mathbf{1 s t}^{\text {steek }}$	$\begin{array}{l}\text { 1.General equation of second degree. Tracing of } \\ \text { conics. Tangent at any point to the conic, } \\ \text { 2.chord of contact, pole of line to the conic, director } \\ \text { circle of conic. } \\ \text { 3.System of conics. } \\ \text { Confocal conics. } \\ \text { 4.Polar equation of a conic, tangent and normal to the } \\ \text { conic. }\end{array}$		
$\mathbf{2 .}$		$\mathbf{2}^{\text {nd }}$ week		$]$	
:---					

CLASS:B.Sc.(Hons) Mathematics-II Year IVSem
 NAME OF PAPER -Transform Techniques
 PAPER CODE - BML-402

SR. NO.	MONTHS	PERIOD	TOPICS			
$\mathbf{1 .}$	$\mathbf{1}^{\text {st }}$	$\mathbf{1 s t}^{\text {week }}$	1.Laplace Transform: - Existence theorem for Laplace transforms, Linearity of the Laplace transforms, Shifting theorems, Laplace transforms of derivatives and integrals, 2.Differentiation and integration of Laplace transforms, Convolution theorem,			
3. InverseLaplace transforms, convolution theorem,						
Inverse Laplace transforms of derivatives and						
integrals,						
4.solution of ordinary differential equations using						
Laplace transform.				$	$	2.
:---						

CLASS:B.Sc.(Hons) Mathematics-II Year IVSem

NAME OF PAPER - Elementary Partial Differential Equations
PAPER CODE - BML-403

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week \& $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Partial differential equations: Formation, order and degree, Linear and Non-Linear Partialdifferential equations of the first order: Complete solution,singular solution, Generalsolution, 3.Solution of Lagrange's linear equations, Charpit's general method of solution. 4.Compatible systems of first order equations, Jacobi's method.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Linear partial differential equations of second and higher orders, 2.Linear and non-linearhomogeneous and nonhomogeneous equations with constant coefficients, 3. Partialdifferential equation with variable coefficients reducible to equations with constant coefficients, their complimentary functions and particular integrals, 4.Equations reducible to linear equations with constant coefficients.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Classification of linear partial differential equations of second order, hyperbolic, parabolic and elliptic types, 2. Reduction of second order linear partial differential equations toCanonical (Normal) forms and their solutions, 3.Solution of linear hyperbolic equations, 4.Monge's method for partial differential equations of second order.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Cauchy's problem for second order partial differential equations, 2.Characteristic equationsand characteristic curves of second order partial differential equation, 3.Method of separationof variables: Solution of Laplace's equation, 4.Wave equation (one and two dimensions), Diffusion (Heat) equation (one and two dimension) in Cartesian Co-ordinate system.

CLASS:B.Sc.(Hons) Mathematics-II Year IVSem
 NAME OF PAPER - Statics
 PAPER CODE - BML-404

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week \& $2^{\text {nd }}$ week Last week	Composition and resolution of forces. Parallel forces. Moments and Couples.
2.	$2^{\text {nd }}$	1st week \& $2^{\text {nd }}$ week Last week	Analytical conditions of equilibrium of coplanar forces. Friction. Centre of Gravity.
3.	$3^{\text {rd }}$	1st week \& $2^{\text {nd }}$ week Last week	Virtual work. Forces in three dimensions. Poinsots central axis.
4.	$4^{\text {th }}$	1st week \& $2^{\text {nd }}$ week Last week	Wrenches. Null lines and planes. Stable and unstable equilibrium.

PAPER CODE - BML-405

SR. NO.	MONTHS	PERIOD	TOPICS			
$\mathbf{1 .}$	$\mathbf{1}^{\text {st }}$	$\mathbf{1 s t}^{\prime}$ week	1.Definition, scope, methodology and applications of OR. Types of OR models. 2.Concept of optimization, Linear Programming: Introduction, Formulation of a Linear Programming Problem (LPP),			
3.Requirements for an LPP, Advantages and						
limitations of LP.						
4.Graphical solution: Multiple, unbounded and						
infeasible solutions.				$	$	2.
:---						

CLASS:B.Sc.(Hons) Mathematics-II Year IVSem

NAME OF PAPER - Special Functions-II
PAPER CODE - BML-406

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	Laguerre Polynomials: Laguerre's equation and its solution, 2.generating function, 3. alternative expression for the Laguerre polynomials, 4.explicit expressions and special values of the Laguerre polynomials,
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.orthogonality properties of Laguerre polynomials, 2.relation between Laguerre polynomials and their derivatives, 3.recurrence relations, associatedLaguerre polynomials, 4.properties of the associated Laguerre polynomials.
3.	$3^{\text {r }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Hypergeometric functions: The hypergeometric series, 2.an integral formula for thehypergeometric series, the hypergeometric equation, 3.linear relation between the solutions of the hypergeometric equation, 4.relation of contiguity,
4.	$4^{\text {th }}$	$\mathbf{1}^{\text {st }}$ week $\&$ $2^{\text {nd }}$ week $\mathbf{3}^{\text {rd }}$ week $\mathcal{\&}$ Last week	1the confluent hypergeometric function, 2generalized hypergeometric series

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Jacobians, 2.Beta and Gama functions, 3.Double and Triple integrals, Dirichlets integrals, 4.Change of order of integration in double integrals.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Fourier's series: Fourier expansion of piecewise monotonic functions, 2. Properties of Fourier Co-efficients, Dirichlet's conditions, Parseval's identity for Fourier series, 3.Fourier series for even and odd functions, 4.Half range series, Change of Intervals.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Extended Complex Plane, Stereographic projection of complex numbers, 2.continuity and differentiability of complex functions, 3.Analytic functions, Cauchy-Riemann equations. 4. Harmonic functions.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Mappings by elementary functions: Translation, rotation, 2. Magnification and Inversion. 3.Conformal Mappings, Mobius transformations. 4.Fixed pints, Cross ratio, Inverse Points and critical mappings.

$\begin{array}{c}\text { SR. } \\ \text { NO. }\end{array}$	MONTHS	PERIOD	TOPICS		
$\mathbf{1 .}$	$\mathbf{1}^{\text {st }}$	$\mathbf{1 s t}^{\text {week }}$			
		$\mathbf{2}^{\text {nd }} \mathbf{w e e k}$	$\begin{array}{l}\text { 1.Vector spaces, subspaces, Sum and Direct } \\ \text { sum of subspaces, Linear span, } \\ \text { 2.Linearly Independent and dependent } \\ \text { subsets of a vector space. Finitely generated } \\ \text { vector space, }\end{array}$		
3.Existence theorem for basis of a finitely					
generated vector space,					
4.Finite dimensional vector spaces,					
Invariance of the number of elements of bases				$\}$	sets, Dimensions, Quotient space
:---					
and its dimension.					

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Finite Differences operators and their relations. Finding the missing terms and effect of error in a difference tabular values, 2.Interpolation with equal intervals: Newton's forward and Newton's backward interpolation formulae. 3. Interpolation with unequal intervals: Newton's divided difference, 4. Lagrange's Interpolation formulae.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Central Differences: Gauss forward and Gauss's backward interpolation formulae, 2.Sterling, Bessel Formula. 3. Eigen Value Problems: Power method, Jacobi's method, Given's method, 4.House-Holder's method, QR method, Lanczos method.
3.	$3^{\text {rd }}$	 $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Numerical Differentiation: Derivative of a function using interpolation formulae as studied in Sections-I \& II. 2.Numerical Integration: Newton-Cote's Quadrature formula, Trapezoidal rule, Simpson's one- third and three-eighth rule, Gauss Quadrature formula.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Difference equation: Formation of difference equation, Linear difference equation, 2.Difference equation reducible to linear form. Numerical solution of ordinary differential equations: Single step methodsPicard's method. 3.Taylor's series method, Euler's method, Runge-Kutta Methods. Multiple step methods; 4.Predictor-corrector method, Modified Euler's method, Milne-Simpson's method.

CLASS: B.Sc.(Hons) Mathematics-III Year VI Sem
 NAME OF PAPER - Numerical Analysis-Lab
 Practical
 PAPER CODE - BMP-604

$\begin{aligned} & \hline \mathbf{S} \\ & \mathbf{R} . \\ & \mathbf{N} \\ & \mathbf{O} . \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $\mathbf{2}^{\text {nd }}$ week Last week	Programming in C 1 To integrate numerically using Trapezoidal rule. 2. To integrate numerically using Simpson's onethird rule. 3. To integrate numerically using Simpson's three-eighth rule.
2.	$2^{\text {nd }}$	$\begin{gathered} 1^{\text {st }} \text { week } \\ \& \\ 2^{\text {nd }} \text { week } \\ \\ 3^{\text {rd }} \text { week } \\ \& \\ \text { Last week } \end{gathered}$	4.To find numerical solution of ordinary differential equations by Euler's method/ Modified Euler's method, 5. Taylor's series Method 6. To find numerical solution of ordinary differential equations by Runge -Kutta method.
3.	$3^{\text {rd }}$	$\begin{gathered} \mathbf{1}^{\text {st }} \text { week } \\ \& \\ 2^{\text {nd }} \text { week } \\ \\ \mathbf{3}^{\text {rd }} \text { week } \\ \& \\ \text { Last week } \end{gathered}$	7 To interpolate the data using Newton's forward interpolation formula 8 To interpolate the data using Newton's backward interpolation formula
4.	$4^{\text {th }}$	$\mathbf{1}^{\text {st }}$ week \& $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	9. To interpolate the data using Gauss's forward interpolation formula 10. To interpolate the data using Gauss's backward interpolation formula 11. To interpolate the data using Lagrange's interpolation formula

CLASS: B.Sc.(Hons) Mathematics-III Year VI Sem
NAME OF PAPER - Dynamics
PAPER CODE - BML-605

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	 Last week	1.Velocity and acceleration along radial, transverse, tangential and normal directions. 2.Relative velocity and acceleration. Simple harmonic motion. Elastic strings.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Mass, Momentum and Force. 2.Newton's laws of motion. 3.Work, Power and Energy. 4.Definitions of Conservative forces and Impulsive forces.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Motion on smooth and rough plane curves. 2.Projectile motion of a particle in a plane. Vector angular velocity.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.General motion of a rigid body. Central Orbits, 2. Kepler laws of motion. 3. Motion of a particle in three dimensions. 4.Acceleration in terms of different coordinate systems.

PAPER CODE - BML-606

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1{ }^{\text {st }}$	 Last week	The process of Applied Mathematics: Mathematical modeling, need, techniques, classification and illustrative.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Mathematical modeling through ordinary differential equation of first order. 2.Mathematical modeling in population dynamics, 3.mathematical modeling of epidemic and compartment models through system of ordinary differential equations.
3.	$3^{\text {rd }}$	$\begin{gathered} 1^{\text {st }} \text { week } \\ \& \\ 2^{\text {nd }} \text { week } \\ 3^{\text {rd }} \text { week } \end{gathered}$ Last week	1.Mathematical modeling in economics, in medicine, Arms race, Battle, international trade and 2.dynamics through ordinary differential equations. 3. Mathematical modeling through ordinary differential equation of record order.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week \& $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Mathematical modeling through difference equations: need, basic theory, 2.economics and finance, 3.population dynamics and Genetics, 4.probability theory and examples.

M.Sc.
 Mathematics

Even Semesters

CLASS:M.Sc. Mathematics-I Year IISem NAME OF PAPER -ABSTRACT ALGEBRA
 PAPER CODE -MAL-521

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Canonical Forms-Similarity of linear transformations. 2. Invariant subspaces. Reduction to triangular forms. 3. Nilpotent transformations. Index of nilpotency. 4.Invariants of a nilpotenttransformation.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.The primary decomposition theorem. 2.Jordan blocks and Jordan forms. 3 Rational canonical form. 4.Generalized Jordan form over any field.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Cyclic modules. Free modules. 2.Simple modules. Semi-simple modules. 3.Schur's Lemma.Noetherian and Artinian modules and rings 4. Hilbert basis theorem.
4.	$4^{\text {th }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Wedderburn-Artin theorem. Uniform modules, primary modules, 2.Noether-Laskertheorem. Smith normal form over a principal ideal domain and rank. 3.Fundamental structure theorem for finitely generated abelian groups 4.Its application to finitely generated Abelian groups.

CLASS:M.Sc. Mathematics-I Year IISem NAME OF PAPER-MEASURE AND INTEGRATION THEORY PAPER CODE -MAL-522

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1{ }^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Measurable functions and their equivalent formulations, Properties of measurable functions. 2. Approximation of measurable functions by sequences of simple functions, 3.Measurable functions as nearly continuous functions, Egoroffs theorem, Lusin's theorem, 4.Convergence in measure and F. Riesz theorem for convergence in measure, Almost uniformconvergence.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Shortcomings of Riemann Integral. Lebesque Integral of a bounded function over a set of finite measure and its properties, 2.Lebesgue integral as a generalization of Riemann integral,Bounded convergence theorem, 3.Lebesgue theorem regarding points of discontinuities of Riemann integrable functions, Integral of non-negative functions, 4.Fatou's Lemma, Monotone convergence theorem, General Lebesgue Integral, Lebesgue convergence theorem.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Vitali's covering Lemma, Differentiation of monotonic functions, 2.Functions of boundedvariation and its representation as difference of monotonic functions. 3.Differentiation of Indefiniteintegral. Fundamental Theorem of Calculus. 4.Absolutely continuous functions and theirproperties.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Lpspaces, Convex functions, Jensen's inequalities, 2.The Holder and Minkowskiinequalities, 3.Convergence and Completeness of Lpspace, RieszFisher Theorem, 4. Boundedlinear functional on Lpspace, Riesz representation theorem.

CLASS:M.Sc. Mathematics-I Year IISem NAME OF PAPER -METHODS OF APPLIED MATHEMATICS
 PAPER CODE -MAL-523

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ weeK Last week	1.Fourier Transforms - Definition and properties, 2.Fourier transform of some elementary functions, convolution theorem, 3.Application of Fourier transforms to solve ordinary \& partial differential equations. 4.Curvilinear Co-ordinates Co-ordinate transformation, Orthogonal Co-ordinates
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Changeof Co-ordinates, Cartesian, Cylindrical and spherical co-ordinates, 2 Expressions for velocity and accelerations, ds, dv and ds2 in orthogonal co-ordinates, 3.Areas, Volumes \& surface areas in Cartesian, Cylindrical \& spherical co-ordinates in a few simple cases, Grad, div, 4.Curl, Laplacian in orthogonal Co-ordinates, Contravariant and Co-variant components of a vector, Metric coefficients \& the volume element.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Sample spaces, random variables, 2.Mathematical expectation and moments, 3.Binomial,Poisson, Geometric, 4.Uniform and Exponential distributions.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Normal \& Gamma distributions. 2.Multiple Regression, Partial 3.Multiple Correlation, t,F and Chi-square distributions, 4 Weak law of large numbers and Central Limit Theorem..

CLASS:M.Sc. Mathematics-I Year IISem NAME OF PAPER -ORDINARY DIFFERENTIAL EQUATIONS-II PAPER CODE -MAL-524

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Linear systems, fundamental set and fundamental matrix of a homogeneous system, 2.Wronskianof a system. Abel - Liouville formula, Adjoint systems, 3.Reduction of the order of a homogeneoussystem. 4.Systems with constant coefficients, Method of variation of constants for a non-homogeneous system, Periodic solutions, Floquet theory for periodic systems
2.	$2^{\text {nd }}$	$\mathbf{1 s}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Linear differential equations of ordern, Lagrange's identity, Green's formula 2.Nonlinear differential equations, Plane autonomous systems and their critical points 3. Classification of critical points-rotation points, foci, nodes, saddle points. Stability, asymptotical stability and unstability of critical points, 4. Almost linear systems, Perturbations, Simple critical points
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Dependence on a parameter, Liapunov function, 2.Liapunov's method to determine stability for nonlinearsystems, Limit cycles, 3.Bendixson non-existence theorem, Statement of Poincare-Bendixson theorem,Index of a critical point 4. Motivating problems of calculus of variations
4.	$4^{\text {th }}$	$\mathbf{1 s t}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Shortest distance, Minimum surface of revolution, Brachistochrone problem, 2.Isoperimetric problem, Geodesic, Fundamental lemma ofcalculus of variations, 3.Euler's equation for one dependent function and its generalization to 'n'dependent functions and to higher order derivatives, 4.Conditional extremum under geometric constraints and under integral constraints.

CLASS:M.Sc. Mathematics-I Year IISem NAME OF PAPER -COMPLEX ANALYSIS-II PAPER CODE -MAL-525

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1{ }^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Analytic Continuation; Spaces of Analytic functions, Hurwitz's theorem, 2.Montel'stheorem, Uniqueness of direct analytic continuation, 3. Uniqueness of analytic continuation along a curve, power series method of analytic continuation. 4.Monodromy theorem and its consequences
2.	$2^{\text {nd }}$	1 $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Entire function; Canonical products, Weierstrass' factorisation theorem, 2.Exponent of Convergence, Order of an entire function, Jensen's formula, 3.Borel's theorem. Hadamard's factorization theorem, 4.Hadamard's three circles theorem.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.The range of an analytic function. Bloch's theorem. 2.The Little Picard theorem. Schottky'stheorem. 3.MontelCaratheodory and the Great picard theorem. Conformal mapping; 4.Riemann mapping theorem, Harmonic function on a disk, Dirichletproblem.
4.	$4^{\text {th }}$	1 $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Green's function. Harnack's inequality and theorem, 2.Univalent functions. Bieberbach's conjecture (Statement only) and the $1 / 4$ theorem. Meromorphic Function; 3.Gamma function and its properties, Riemann Zeta function, Riemann'sfunctional equation. 4.Runge's theorem, Poisson-Jensen formula.

CLASS:M.Sc. Mathematics-I Year IISem
 NAME OF PAPER-Advanced Numerical Methods
 PAPER CODE -MAL-526

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Interpolation: Introduction of Gauss' Central Difference Formulae, Stirling's Formula, Bessel's Formula without proof, 2.Everett's Formula, Relation between Bessel's and Everett's Formulae. Hermite'sInterpolation Formula, Divided Differences and Their Properties, 3.Newton's General InterpolationFormula, Interpolation by Iteration, Inverse Interpolation, Double Interpolation. 4.Approximation: Norms of functions - Best Approximations: Least squares polynomial approximation-Approximation with Chebyshev polynomials - Piecewise Linear \& Cubic Spline approximation.
2.	$2^{\text {nd }}$	$\mathbf{1 s t}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Numerical Differentiation: Errors in Numerical Differentiation, Cubic Splines Method, Differentiation Formulae with Function Values, Maximum and Minimum Values of a Tabulated Function. 2.Numerical Integration: Boole's and Weddle's rules, use of Cubic splines, Romberg integration, Newton-Cotes integration formula, Euler-Maclaurin formula, Adaptive Quadrature method. Gaussian integration, 3.Numerical evaluation of Singular integrals, Numerical evaluation of double and triple integrals withconstant and variable limits and its application, 4.Solution of integral equations. Iterative Method for System of Linear Equations
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.General iterative method. Jacobi and Gauss-Seidel method. Relaxation method. 2.Necessary and sufficient conditions for convergence. Speed of convergence.S.O.R. and S.U.R. methods. 3.Determination of eigenvalue by iterative methods. Ill conditioned system.Solution of tridiagonal system, 4.Iterative Method for System of Non-linear Equations: Complex root of non-linear equation, solution ofsimultaneous non-linear equations.
4.	$4^{\text {th }}$	$\mathbf{1}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Initial value problems: RungeKutta methods of fourth order, Multistep method- The Adams-Moulton method, stability, 2. Convergence and Truncation error for the above methods. Milne's method, Cubicspline method, 3.Simultaneous and higher order equations, Boundary Value Problems: Second order finite difference, 4.Shooting method and Cubic spline methods, Numerov's method, Mixed BVPs.

CLASS:M.Sc. Mathematics-I Year IISem
 NAME OF PAPER-Computing Lab-MATLAB PAPER CODE - 527

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1{ }^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.MATLAB Basics : working in the command window, Arithmetic Operations, Elementary Math Built-in Functions, Variable names, script files, 2.Matrices and Arrays, Input to a Script file Output commands-The disp Command, 3. The fprintf Command, the save and load commands, Importing and Exporting data. 4. Two-dimensional plots, formatting a plot. Multiple plots on the same page.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Operations with Arrays: Creating, Concatenating, and Expanding Matrices, 2.Removing Rows or Columns from a Matrix, Reshaping and Rearranging Arrays, 3.Multidimensional Arrays, Array Indexing, Mathematical Operations with Arrays, 4.Systems of Linear Equations and solutions.
3.	$3^{\text {rd }}$	$\mathbf{1}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Programming in MATLAB: Relational and logical operators, 2. 2.Conditional statements : if-end, if-else-end, if-elseif-else-end Structures. 3. The switch-caseStatement . LOOPS: for-end, while-end loops, Nested loops and nested conditional statements, 4.the break and continue commands. Creating a function file, local and global variables.
4.	$4^{\text {th }}$	$\mathbf{1 s}^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Symbolic math: Symbolic objects and symbolic expressions, 2.Creating symbolic objects,creating symbolic expressions, 3.the find sym command and the default symbolic variable, 4.Changing the form of an existing symbolic expression.

CLASS:M.Sc. Mathematics-II Year IVSem NAME OF PAPER-FUNCTIONAL ANALYSIS
 PAPER CODE -641

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1{ }^{\text {st }}$	1st week $\mathbf{2}^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Normed linear spaces, metric on normed linear spaces, Holder's and Minkowski'sinequality, 2.completeness of quotient spaces of normed linear spaces. Completeness of $l_{P}, L_{P}, R^{n}, C^{n}$ and $\mathrm{C}[\mathrm{a}, \mathrm{b}]$. 3.Bounded linear transformation. Equivalent formulation of continuity. 4.Spaces of bounded linear transformation. Continuous linear functional, conjugate spaces.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Hahn Banach extension theorem (Real and Complex form), Riesz Representation theorem for bounded linear functionals on LP and $\mathrm{C}[\mathrm{a}, \mathrm{b}]$. 2.Second Conjugate spaces, Reflexive spaces, 3.Uniform boundedness principle and its consequence, 4.Open mapping theorem and its application, projections, closed graph theorem.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Equivalent norms, weak and strong convergence, their equivalence in finite dimensionalspaces. 2. Compact operators and its relation with continuous operators, 3.Compactness of lineartransformation on a finite dimensional space, 4. Properties of compact operators, compactness of the limit of the sequence of compact operators.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Inner product spaces, Hilbert spaces, Schwarz's inequality, 2.Hilbert space as normed linear space, convex sets in Hilbert spaces. 3. Projection theorem, orthonormal sets, Bessel's inequality, 4.Parseval's identity, Conjugate of a Hilbert space..

CLASS:M.Sc. Mathematics-II Year IVSem NAME OF PAPER-DIFFERENTIAL GEOMETRY
 PAPER CODE -642

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Curves with torsion: Tangent, 2.Principal Normal, Curvature, 3.Binormal, Torsion, 4.Serret Frenet formulae
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Locus of centre of Curvature, 2.Locus of centre of Spherical 3.Curvature, Surfaces, Tangent plane, 4.Normal, Envelope, Characteristics, Edge of regression
3.	$3^{\text {r }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Curvilinear Co-ordinates, 2.First order magnitudes, Directions on a surface, 3.The Normal, Second order magnitudes, 4.Derivative of unit normal
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Principal directions and curvatures, 2.First and Second curvatures, 3.Geodesic property, Equations of geodesics, 4. Surface of revolution, Torsion of a geodesic.

CLASS:M.Sc. Mathematics-II Year IVSem NAME OF PAPER- MECHANICS OF SOLIDS-II
 PAPER CODE -643

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Two-dimensional Problems: Plane stress. Generalized plane stress. Airy stress function. 2.General solution of Biharmonic equation. Stresses and displacements in terms of complex potentials. 3. The structure of functions of $\phi(z)$ and $\psi(z)$. First and second boundary value problems in plane elasticity, 4.Thick-walled tube under external and internal pressures.
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Viscoelasticity: Spring \& Dashpot, 2. Maxwell \& Kelvin Models, 3.Three parameter solid, 4 Correspondence principle\& its application to the Deformation of a viscoelastic Thick-walled tube in Plane strain.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Torsion: Torsion of cylindrical bars. Tortional rigidity. Torsion and stress functions. 2. Lines of shearing stress. Simple problems related to circle, ellipse and equilateral triangle. 3. Waves: Propagation of waves in an isotropic elastic solid medium. Waves of dilatation and distortion. 4. Plane waves. Elastic surface waves such as Rayleigh and Love waves.
4.	$4^{\text {th }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1Variationalmethods - Theorems of minimum potential energy. 2.Theorems of minimum complementary energy. Reciprocal theorem of Betti and Rayleigh. 3.Deflection of elastic string and elastic membrane. Solution of Euler's equation by Ritz, 4. Galerkin and Kantorovich methods.

CLASS:M.Sc. Mathematics-II Year IVSem NAME OF PAPER-INTEGRAL EQUATIONS
 PAPER CODE -644

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1{ }^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Definition of Integral Equations and their classification.Relation between integral and differential equations Fredholm integral equations of second kind with separable kernels. 2.Eigen Values and Eigen functions. Reduction to a system of algebraic equations. 3.An approximate Method. Method of successive approximations.Iterative scheme. 4. Condition of convergence and uniqueness of series solution. Resolvent kernel and its results. Fredholm theorems
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1 Solution of Volterra's integral equations by iterative scheme. Successive approximation. 2.Resolvent kernel. Integral transform methods: Fourier transform, 3. Laplace transform, Convolution integral, 4. Application to Volterra integral equations with Convolution type kernels, Abel's equations
3.	$3^{\text {r }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Symmetric kernel. Complex Hilbert space. Orthonormal system of functions, 2.Fundamental properties of eigen values and eigen functions for symmetric kernels. 3. Expansion in eigen function and bilinear form, Hilbert Schmidt theorem, 4.Solution of integral equations with symmetric kernels
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Singular Integral Equations 2. Inversion formula for singular integral equation with kernel of type $(\mathrm{h}(\mathrm{s})-\mathrm{h}(\mathrm{t})-\mathrm{a}, 0<\mathrm{a}<1)$. 3.Dirac Delta Function. Green's function approach to reduce boundary value problems of a self-adjoint differential equation with homogeneous boundary conditions to integral equation forms. 4.Auxiliary problem satisfied by Green's function. Modified Green's function

CLASS:M.Sc. Mathematics-II Year IVSem NAME OF PAPER-: ADVANCED FLUID MECHANICS PAPER CODE -645

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1{ }^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Stress components in a real fluid, stress tensor, Symmetry of the stress tensor, Stresses in a fluid at rest, 2.Relations between rectangular components of stress in transformed coordinate system, Connection between stresses and velocity gradients. 3.Viscous fluid, Navier-Stokes equations of motion. Laminar Flows, Exact solution of Navier-Stokes equations: Couette flows 4.Generalized Couette flow between two parallel plates, Plane Poiseuille flow, Hagen-Poiseuille flow
2.	$2^{\text {nd }}$	1st $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Flow through tubes of uniform cross section in the form of circle, annulus, ellipse and equilateral triangle under constant pressure gradient. 2.Unsteady flow over a flat plate: Stokes First \& second Problem. Dynamical similarity: Dimensional Analysis and Buckingham π-theorem. 3.Reynolds number, Wever Number, Mach Number, Froude Number, Eckert Number, 4.Application of pitheorem to viscous and compressible fluid flow
3.	$3^{\text {r }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Boundary Layer Flow: Prandtl's boundary layer approximation, 2.Boundary layer thickness, displacement thickness, momentum thickness, boundary layer equations in twodimensions, 3.Flat Plate Boundary Layer-Blasius solution, Karman integral equations. 4.Boundary Layers with Pressure Gradients: Separation of boundary layer.
4.	$4^{\text {th }}$	1 $^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Compressible flow: Stagnation properties. Wave motion in a gas: Speed of Sound, 2. Equation of motion of a gas, Variation of fluid velocity with flow area, Subsonic, Sonic and Supersonic flows of a gas. 3.Isentropic gas flows: Property relations for isentropic flow of ideal gases, Flow through a nozzle; 4. Converging Nozzles, Converging-Diverging Nozzles.

CLASS:M.Sc. Mathematics-II Year IVSem NAME OF PAPER- COMPUTING LAB-III
 PAPER CODE -648

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Overview 2. Special Characters 3. Text, Making Tables 4. Bibliography with Bibtex,
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Math Mode, Equations and arrays 2. Specific operators of Mathematics 3. structure formations - Derivatives, Integrals 4. del operator, product and sum operator
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1. Making special parts 2. Format for technical writing - Article 3. , Report 4. Cover page
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1 Abstract, 2. other front matter, Back matter, 3.graphics, 4.Importing pictures.

CLASS:M.Sc. Mathematics-I Year I Sem
 NAME OF PAPER - PROGRAMMING WITH FORTRAN (PRACTICAL)
 PAPER CODE -MAL-517

*Practical will be based on the paper MAL-516/Programming with FORTRAN Theory

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Computer Programming in Fortran 90/95: Numerical constants and variables, arithmetic expressions; implicit declaration, named constants, input/output; 2.List directed input/output statements, 3.Format specifications. Declarations including KIND specifications, 4.Use of complex variables, Pointers
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1 Logical expressions and control flow; conditional flow; IF structure, Block DO loop Counted controlled Loops. 2.arrays; input/output of arrays, arrays with variable size using ALLOCATABLE statement, 3.arrays handling functions, 4. multidimensional arrays
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Strings, declaration of character variables, 2. character handling functions, operators on strings, 3.Subprograms, Types of Subprograms, Significance Functions; subroutines; 4. Procedures with array arguments, Recursion
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week \&Last week	1.Derived types, Elements of derived type, arrays and derived type 2.Processing files, Sequential file, 3. Direct Access file; creating and closing a file and 4.Accessing elements using pointers with example

CLASS:M.Sc. Mathematics-II Year IIISem NAME OF PAPER - Computing Lab-II (MATLAB Programming \& Applications)
 PAPER CODE -MAL-634

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	MONTHS	PERIOD	TOPICS
1.	$1^{\text {st }}$	1st week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.User-Defined Functions and Function Files: Main Features of a Function file, Saving aFunction File, Using a User-Defined Function, 2.Comparison between Script Files and Function Files, Anonymous and Inline Functions: Anonymous Functions, Inline Functions. 3.Functions:Using Function Handles for Passing a Function into a Function, Using a Function Name for Passing a Function into a Function. 4.Subfunctions, Nested Functions..
2.	$2^{\text {nd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Polynomials: Value of a Polynomial, Roots of a Polynomial, Addition, Multiplication and Division of Polynomials, 2.Derivatives of Polynomials. Curve Fitting with Polynomials, The polyfit Function, Curve Fitting with Functions other than Polynomials. 3.Applications in Numerical Analysis: Solution of an Equation with one Variable, Minimum or a Maximum of a Function, 4.Numerical Integration, Ordinary Differential Equations.
3.	$3^{\text {rd }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Three Dimensional Plots: Line Plots, Mesh and Surface Plots, Plots with Special Graphics, 2.The View Command.Symbolic Math: Solving Algebraic Equations, 3.Differentiation, Integration, Solving an OrdinaryDifferential Equation, Plotting Symbolic Expressions, 4.Numerical Calculations with Symbolic Expressions.
4.	$4^{\text {th }}$	$1^{\text {st }}$ week $2^{\text {nd }}$ week $3^{\text {rd }}$ week Last week	1.Numerical Methods - Interpolation : Lagrange's interpolation formula, 2.Newton Gregoryforward interpolation formula, Newton Gregory backward interpolation formula. 3.Solution of asystem of Linear Equations: (Unique solution case only) :Gauss - Elimination Method, Gauss - Jordan Method. 4.Solution of Ordinary Differential Equations: Euler's Method,Euler's Modified Method RungeKutta Second and Fourth order Method..

The question paper will consist of Two sections Theory and Practical. Question No. 1 based on theory will contain Four short answer type questions without any internal choice covering the entire syllabus and shall be compulsory. Each of the two sections will contain two questions and the students are required to solve two questions practically taking one question from each section. All questions carry equal marks.

